首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The simultaneous observations of Pc4 geomagnetic pulsations at the two temporary stations, located along the geomagnetic meridian 50 km to the North and South from the observatory Borok (L = 2.8), have been used for the investigation of amplitude gradients of both H- and D-components of these pulsations. It has been discovered that the direction of a meridional component of the gradient H (gradMH) depends on the frequency ƒ of a spectral component of pulsations. The gradMD is directed more or less permanently northward independently from the frequency ƒ These results are the consequence of a local amplification of geomagnetic pulsations due to Alfvén waves resonance along the magnetic field lines. It has been demonstrated that the frequencies ƒR for which the northward direction of gradMH is replaced by the southward one (with increasing ƒ) can be interpreted as the eigen frequencies of the field line which intersects the meridian in the middle between two temporary stations, i.e. in Borok.

The possible applications of a gradient method of measurement of the magnetic field lines' eigen frequencies are discussed.  相似文献   


2.
Based on the observational data obtained at eleven stations along a geomagnetic meridian (Φm = 45–63°), the characteristics of pc 3, 4 pulsations are investigated. It has been shown that pc 3, 4 pulsations possess two amplitude maxima: one in the high latitudes and the other in middle latitudes. Consequently, the amplitude minimum between the two maxima is observed in subauroral latitudes (Φm ≈ 60°). Examining the peculiarities of the polarization behaviour of pc 3, 4 pulsations along the meridian array, two different regions, where the pulsations are generated, are noticed. One is situated in the middle latitudes of about 55–60°, and the other in the auroral area of about 65–70° in geomagnetic latitude. The former region corresponds to a projection of an area inside the plasmapause and the latter of an area of the outer radiation belt in the magnetosphere. The dependence of the pc 3, 4 periods on the position of the plasmapause is clarified. It is also shown that both the position of the pc 3 amplitude maximum in the middle latitudes and the position of pc 4 minimum in the subauroral area shift according to the variation in the magnetic activity and the position of plasmapause.The dynamic spectra of the simultaneous wave-packets of Pc-pulsations are investigated along the meridional profile. The maximum time delay of the Pc-signals is found at a latitude of about 57°, corresponding to the region of low values of Alfvén velocity inside the plasmasphere. On the other hand, a sharp decrease in the time delay is observed at a latitude of about 60°, the region of the rapid increase of Alfvén velocity at the plasmaspheric boundary in the magnetosphere.  相似文献   

3.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

4.
Several attempts have been made to predict the strength of the interplanetary magnetic field (IMF) from the frequency of Pc 3, 4 pulsations measured on the ground. The predictive capability of the ground pulsations depends on the relationship which exists between their frequency and the IMF magnitude. It has been suggested that the relationship improves considerably when coincident frequencies between two stations are used.In this paper we show the correlation between the IMF magnitude and the frequency of coincident pulsation events in a network of five stations in the IGS magnetometer array. We do find that the frequency-field strength relationship is very good for the coincident events at the stations with large longitudinal separation ( > 3 h). We also confirm that the frequency taken from a network of ground stations is a better predictor of IMF magnitude than that from a single station.  相似文献   

5.
The nonlinear frequency shift arising from the interaction of the quasimono- chromatic whistler-mode wave with resonant particles in an inhomogeneous plasma is derived. The modulational instability caused by this shift is investigated. The results are applied to the propagation of long-duration VLF whistler-mode signals along the magnetic field in the magnetosphere. It is shown that the modulational instability of these waves in the equatorial region leads to pulsations very similar to those observed experimentally  相似文献   

6.
This paper is based on the postulate that the natural electromagnetic radiation observed in the micropulsation band is accounted for by the eigenmodes of a resonant cavity in the Earth's outer atmosphere, just as the adjacent ELF part of the spectrum is explained by resonances in the Earth-ionosphere cavity. The inner edge of the plasma sheet (the Alfvén layer) forms an effective resonant cavity which we call the Alfvénsphere. Its complex medium is characterized by two parameters, effective conductivity, and effective Alfvén speed: its quasi-stationary states are specified by two state parameters, effective cavity size, and effective time scale for magnetospheric processes, and in principle, they can be evaluated from the power spectra of observed micropulsations. Because of the complex geometry of the cavity and the fact that the vector hydromagnetic wave equation for an asymmetric electric field is not simply separable in spherical and orthogonal dipole coordinates (and the spatial boundary value problem is virtually insoluble), a model is developed which contains the essential physics and admits of tractable equations. A coupling scheme is defined and discussed which permits one to study the eigenvalue equation under conditions of weak and strong coupling as well as the uncoupled case. Emphasis is placed on the most difficult weakly-coupled case because the results can be readily compared with the uncoupled case. The complex dispersion relation-ship is presented and complex eigenvalues are calculated. It is shown that for any mode (v, i, m), the fundamental (i = 1) appears at the highest latitude and the highest harmonic (i = imax) appears at the lowest latitude. Further it is shown that the fundamental and harmonics are split into multiplet frequency states, clustered at different latitudes, and ordered at a particular latitude by the asymmetric label m. This property is used to explain beating and atitudinal and longitudinal variations in pearl pulsations. It is demonstrated that the east-west magnetic component of the perturbed magnetic field (for any mode) has two spatial resonances (logarithmic and asymmetric) and this feature can be used to derive and interpret the T cos2Θ = const law. This in turn suggests a method for ordering the east-west component power spectra for a station at any latitude below 70° N mag. in terms of v, and evaluating the corresponding phenomenological state parameters. The inescapable conclusion appears to be that there is no intrinsic difference between the ‘different’ classes of pulsations; they are simply the excited eigenmodes of the Alfvénsphere for different quasi-stationary states.  相似文献   

7.
Evidence is presented from spectral analysis of Pi2 pulsations detected during a substorm by the University of Alberta meridian chain of magnetometers to support the conclusion that at auroral latitudes there is no apparent correlation between the principal spectral components of Pi2 pulsations and the latitude of the observations. From these data we infer that the Pi2 magnetic variations observed at the Earth's surface are not generated by simple MHD eigenoscillations of magnetospheric field. As well, the data show clear contributions to the Pi2 pulsation spectrum by ionospheric currents. These observations lead to the suggestion that Pi2 pulsation spectra are produced by the sudden changes in magnetospheric and ionospheric current systems which take place at the beginning of a substorm.  相似文献   

8.
We present multi-instrument observations of ultra low frequency (ULF) wave activity from the dawn flank magnetosphere during the period 12:00–13:30 UT on the 16 December 2003. Optical, magnetic and riometer measurements from the Churchill line meridian in the Canadian sector are presented which demonstrate the presence of multiple discrete auroral arc structures accompanied by periodic magnetic and riometer absorption perturbations in the Pc5 (150–600 s) ULF band. Clear polewards propagation is demonstrated in all the instrument data sets, the magnetic signals showing most clearly the amplitude and phase characteristics consistent with discrete frequency field line resonances (FLRs) on closed field lines. Two discrete frequency field line resonant signals are apparent, at 1.8 and 3.0 mHz which resonate at approximately the same latitude. We explain this via the calculation of the Alfvén continuum, and show that both frequencies may be resonant in the same latitudinal region within instrumental resolution. The meridian scanning photometer (MSP) observations from polewards of the magnetometer determined resonant latitudes show evidence of low intensity (∼200 R) poleward moving discrete arcs related to the ULF waves. Interestingly the MSP observations demonstrate poleward phase propagation with variable rates across the field of view; faster apparent polewards phase propagation being seen at higher latitudes. We demonstrate that the complicated “braided” phase of the arcs can be explained via the precipitation resulting from the superposition of two discrete FLRs. Furthermore, we characterise the ≳25 keV energetic electron precipitation in the region of the FLRs and the arc structures via periodic D-region absorption. In this way, we link the magnetic and both soft and energetic particle precipitation signatures of FLRs together for the first time. Our results demonstrate that riometer absorption can be used to characterise FLRs, however, this is only generally possible at lower L-shells where energetic electrons in the ring current overlap with the FLR fields in the equatorial plane.  相似文献   

9.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

10.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

11.
Relationship between the geoefficiency of the solar flares as well as of the active regions passing the central meridian of the Sun and the configuration of the large scale solar magnetic field is studied.It is shown that if the tangential component of the large scale magnetic field at the active region or at the flare region is directed southwards, that region and that flare produce geomagnetic storm. In case when the tangential magnetic field is directed northward, the active region and the flares occurring at that region do not cause any geomagnetic disturbance.An index of the geoefficiency of the solar flares and of the active regions is proposed.  相似文献   

12.
Ground observations of Pi 2 geomagnetic pulsations are correlated with satellite measurements of plasma density for three time intervals. The pulsations were recorded using the IGS network of magnetometer stations and the plasma density measurements were made on board GEOS-1 and ISEE-1. Using the technique of complex demodulation, the amplitude, phase and polarisation characteristics of the Pi 2 pulsations are observed along two meridional profiles; one from Eidar, Iceland (L = 6.7) to Cambridge, U.K. (L = 2.5) and the other from Tromso, Norway (tL = 6.2) to Nurmijarvi, Finland (L = 3.3). The observed characteristics of the Pi 2 pulsations are then compared with the plasma density measurements. Close relationships between the plasmapause position and the position of an ellipticity reversal and a variation in H component phase are observed. A small, secondary amplitude maximum is observed on the U.K./Iceland meridian well inside the position of the projection of the equatorial plasmapause. The primary maxima on the two meridians, in general occur close to the estimated position of the equatorward edge of a westward electrojet. Using the plasma density measurements, the periods of surface waves at the plasmapause for two intervals are estimated and found to be in good agreement with the dominant spectral peaks observed at the ground stations near the plasmapause latitude and within the plasmasphere. The polarisation reversal, together with phase characteristics, spectral evidence and the agreement between the theoretical and observed periods leads to the suggestion that on occasions a surface wave is excited on the plasmapause as an intermediate stage in the propagation of Pi 2 pulsations from the auroral zone to lower latitudes.  相似文献   

13.
Energetic particle response in electromagnetic fields of ULF HM-waves in the magnetosphere is reviewed. Pc4–5 geomagnetic pulsations observed at the synchronous altitude are classified into three types, in respect to their major magnetic field polarization in different directions, local time dependence, and different characteristics of accompanied flux modulations of energetic particles, i.e., two nearly transverse waves with the azimuthal and the radial polarization, and the compressional stormtime pulsations. Firstly, we formulate the drift kinetic theory of particle flux modulations under the constraint of the magnetic moment conservation. A generalized energy integral of the particle motion interacting with a ULF-wave with the three-dimensional structure propagating to the azimuthal direction is obtained in the L-shell coordinate of a mirror magnetic field. Its linearized form is reduced to the same form as the previously derived energy change, including the bounce-drift resonant interaction. It is shown that the perturbed guiding center distribution function of energetic particles consists of four contributions, the adiabatic mirror effect corresponding to pitch-angle change, the kinetic effects due to energy change and the accompanying L-shell displacement, and the bounceaveraged drift phase bunching. Secondly, the basic HM-wave modes constitutingcoupling ULF oscillations in non-uniform plasmas are discussed in different models of approach for different plasma states. The diamagnetic drift Alfvén wave and the compressional drift wave with a larger azimuthal mode number in a high-beta plasma are candidates for the stormtimes pulsations. The former is intrinsically a guided localized mode, while the latter is a non-localized mode. By making use of the above preparation, we apply the developed drift kinetic theory to interpret the phase relationships between the ion flux modulation and the geomagnetic pulsation in some selected examples of observations, demonstrating a fair agreement in theoretical results with the observations.  相似文献   

14.
Data from an East-West line of magnetometer stations stretching approximately along 67° geomagnetic latitude from western Alberta (290° geomagnetic longitude) to western Quebec (350° geomagnetic longitude) in Canada have been used to study the longitudinal characteristics of Pc5 geomagnetic pulsations. This paper concerns the analysis of 3 days' data of relatively intense pulsational activity which occurred around the middle of October in 1976. The intensity variations of Pc5 activity on longitude and time clearly show that the activity is localized in longitude in the morning sector and confused in the afternoon sector. Pulsational activity in the morning sector for two of the events studied appears to be markedly enhanced across the dawn terminator and midway through the pre-noon quadrant. A study of the longitudinal phase variation indicates that the eastern stations lead in phase before noon and lag in phase after noon. This implies that the signals propagate away from noon toward the dawn-dusk meridian. A systematic reversal in the sense of polarization in the horizontal plane was observed when the line of stations rotated across noon. The polarization characteristics in the vertical planes of the events recorded by stations in eastern Canada between 318° and 350° geomagnetic longitude appear to be stationary with respect to time suggesting that the polarization characteristics of pulsations are influenced by geoelectric structures. The implications of these morphological features will be discussed.  相似文献   

15.
Long-period (more than 20 min) quasi-periodic pulsations (QPP) occurring in the Earth's magnetic field (EMF) before the proton flare are studied by the method of spectral correlation analysis of geomagnetic field H-component. The corresponding data have been obtained at six stations located from 12°41'E up to 180° 52'E and from 52°04'N up to 68°52'N.QPP space-time distribution is shown to be correlated with that of the Earth's ionosphere current systems. The results obtained indicate that QPP of the EMF are influenced by QPP of the solar X-ray and ultraviolet radiation modulated by oscillation processes in the active solar region.  相似文献   

16.
The relationship between substorm ionospheric currents and the corresponding ground magnetic perturbations is examined, by using the height-integrated ionospheric current density deduced from the Chatanika incoherent scatter radar and the simultaneous magnetic variations along the Alaska meridian chain of stations. Although time variations of the H component near the radar site on the Earth's surface are in good agreement with those of the east-west ionospheric current, there is a substantial disagreement between the current deduced from the D perturbations and the observed north-south current in the evening sector. It is shown that the disagreement can be removed by introducing a new finding by Yasuhara et al. (1975) that the upward field-aligned current on the poleward side of the auroral oval in the evening sector is more intense than its counterpart fieldaligned current and that it contributes greatly to the ground D perturbations.  相似文献   

17.
In view of the recently discovered time variations in rotation velocity within the solar differentially rotating tachocline (Howe et al. 2000), we study conditions for the equilibrium and excitation of motions in nonrigidly rotating magnetized layers of the radiative zones located near the boundaries of the convection zone. The emphasis is on the possible relationship between quasi-periodic tachocline pulsations and the generation of a nonaxisymmetric magnetic field in the convection zone. This field generation is studied under the assumption that it results from a reduction in the expenditure of energy on convective heat transport. The (antisymmetric about the equator) field is shown to increase in strength if there are both a radial gradient in angular velocity and steady-state axisymmetric meridional circulation of matter. The sense of circulation is assumed to change (causing the sign of the generated field to change) after the maximum permissible field strength is reached. This is apparently attributable to the excitation of the corresponding turbulent viscosity of the medium. It is also important that the cyclic field variations under discussion are accompanied by variations in solar-type dipole magnetic field.  相似文献   

18.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

19.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


20.
Based on magnetic data from the IMS Alaska meridian chain of observatories, the total current of the westward auroral electrojet flowing across the meridian is estimated by using two independent methods. The first one is a simple integration of the north-south component of magnetic perturbations along the meridian, providing the quantity F in units of nT·km. The other is to use the forward method, providing the total current I in units of A. It is shown that F and I have nearly identical time variations. Thus, by normalizing the two quantities and taking the numerical value of F in units of nT·km, it is possible to estimate the total electrojet current flowing across a magnetic meridian, with an accuracy of 90%, by using the latitudinal profile of the H component, namely I (A) = 2.0 F (nT·km).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号