首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
The coarse-grained, Ca-rich inclusions in the Allende meteorite are the highest-temperature condensates from the cooling solar nebula and, as such, the oldest solid objects in the solar system. All refractory elements with condensation points above the accretion temperature of the inclusions whose concentrations in them have been measured are seen to be present in the inclusions in unfractionated proportion to one another relative to C1 chondrites when data are averaged for a large number of inclusions. Observational data for U and theoretical data for both U and Pu suggest that these elements exhibited refractory behavior in the solar nebula. An experiment is proposed in which fissiogenic Xe and U contents are measured in a suite of these inclusions to obtain the244Pu/238U ratio of the solar system at the time of initial condensation with an uncertainty of ±15%.  相似文献   

2.
Within a region of 5 km × 10 km on a downhill slope of the Yamato Mounties, in 1969 the Japanese Expedition Team collected many stones. 9 of them were recognized as meteorites. On 4 of these findings we determined the chemical composition and the rare gas content. According to the mineralogical and the chemical composition, Yamato (a) is an enstatite chondrite, Yamato (b) a Ca-poor achondrite, Yamato (c) seems to be a carbonations chondrite Type III and Yamato (d) a olivine bronzite chondrite. Exposure ages are 1.7, 31, 25 and 4.3 my respectively.  相似文献   

3.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

4.
Rims or rim sequences surrouding chondrules have been identified in carbonaceous and unequilibrated ordinary chondrites. These chondrule rims include three chemical subtypes: Fe,Ca-rich and Fe,Ni-metal-rich rims, which occur predominantly in Kainsaz (CO3), and ferromagnesian rims which occur in Kainsaz (CO3), Allende (CV3), Renazzo (CR2), Chainpur (LL3), Semarkona (LL3), Krymaka (L3), and Tieschitz (H3). The compositions of minerals in these rims are often drastically different from those in the underlying chondrule cores, indicating that the solar nebula was chemically heterogeneous. In many cases the compositions of the rims require an environment that was much more oxidizing than a solar composition gas. Particularly interesting is that some of the Fe,Ca-rich chondrule rims are remarkably similar to some of the rims around refractory inclusions, suggesting that chondrules and refractory inclusions experienced late, coeval processing. The textures of the chondrule rims suggest they formed at high temperatures and that they accreted onto chondrules that had already solidified. The lengthscale of the thermal heterogeneities necessary to make available hot material that could accrete to cold chondrules has been calculated to be less than 10 km, implying there were localized heat sources in the solar nebula.  相似文献   

5.
Reasonable assumptions concerning activity coefficients allow the calculation of the relative volatility of the actinide elements under conditions expected during the early history of the solar system. Several of the light rare earths have volatilities similar to Pu and Cm and can be used as indicators of the degree of fractionation of these extinct elements. Uranium is considerably more volatile than either Pu or Cm, leading to fractionations of about a factor of 50 and 90 in the Pu/U and Cm/U ratio in the earliest condensates from the solar nebula. Ca, Al-rich inclusions from the Allende meteorite, including the coarse-grained inclusions, have a depletion of U relative to La of about a factor of three, suggesting that these inclusions may have been isolated from the nebular gas before condensation of U was complete. The inclusions, however, can be used to determine solar Pu/U and Cm/U ratios if the rare earth patterns are determined in addition to the other normal measurements.  相似文献   

6.
Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 μm in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich “reduced” clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe/Si= 1.7 × solar), and volatiles are depleted (e.g., Na/Si= 0.25 × solar, S/Si= 0.03 × solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites.ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation.  相似文献   

7.
The rare gases He, Ne, Ar, Kr and Xe were measured in bulk samples of Yamato 74123. The 3He and 21Ne exposure ages are found to be 5.50 Ma and 2.83 Ma, respectively. In addition to the cosmogenic component the samples contain primordial rare gases of the fractionated type in amounts typical of ureilites. In a three-isotope plot neon turns out to be a mixture of planetary neon and cosmogenic neon.The elements Na, Mg, Al, Si, P, S, K, Ca, Cr, Mn, Fe, Co, and Ni have been determined by spark source mass spectrometry in Yamato 74123 and for comparison in the ureilites Haveröand Kenna. The chemical composition as well as the noble gas abundance pattern identify Yamato 74123 as an ureilite.  相似文献   

8.
The origin of olivine grains in C2 carbonaceous chondrites is a controversial topic: directly condensed material or detrital remnants of preexisting chondrules? This study shows that the Niger C2 meteorite is similar to Murchison but reveals several interesting features in relation to the origin of the olivine. Microprobe analysis of olivine (Si, Fe, Mg, Ca, Mn, Cr), glass and nickel-iron inclusions within the grains, and Fe-S-O phase as well as the relationships between the olivine grains in the aggregates, between the grains and the interstitial phyllosilicate matrix, between the inclusions and their host olivine grains, and the morphology of some aggregates all show that two populations of olivine coexist, probably crystallized from chondrule melts rather than by direct condensation from a solar nebula gas. The characteristics of the nickel-iron inclusions within the olivine suggest a magmatic chondrule-making stage from previously condensed materials.  相似文献   

9.
A new technique for high-precision isotopic analyses of Ni was developed and applied to terrestrial samples, Allende inclusions and materials from other meteorites. Most of the Allende inclusions analysed here were previously reported to contain isotopically anomalous Ti. In contrast, the Ni isotopic abundances are indistinguishable from normal within presently obtainable precision with only one possible exception. The latter inclusion was shown by others to contain a significantly fractionated magnesium isotopic pattern of 9‰/amu. A normal Ni isotopic pattern has also been observed for the chromite/carbon fraction of an Allende acid residue which is known to contain heavy noble gases of highly anomalous isotopic composition. All other meteoritic samples analysed (Khohar matrix and chondrules, Murray matrix, a Tieschitz chondrule and an Orgueil magnetic fraction) also show normal isotopic compositions of Ni; no evidence for effects from now extinct60Fe could be detected. In spite of ubiquitous isotopic anomalies in Ti from normal Allende inclusions, there is no signature of isotopic variations in Ni from the same samples. Possible constraints for the nucleosynthesis of iron peak elements and for astrophysical and cosmochemical conditions during formation of the solar system are discussed.  相似文献   

10.
(1) The observed anomalies in meteoritic oxygen isotope compositions are not due to an incomplete mixing of several dust or gas-plus-dust components in the solar nebula. If they were, other elements would display similar anomalies. (The FUN inclusions in Allende appear to be exceptions to this premise.) (2) The anomalies must therefore stem from differing degrees of incomplete exchange of oxygen isotopes between the primordial gas and dust components of the nebula. The dust is more likely to have been the16O-enriched component. (3) Since the isotopic difference between dust and gas probably could not have been preserved if the dust was ever completely vaporized in the nebula, the Ca,Al-rich inclusions (CAI's) in carbonaceous chondrites are unlikely to be condensates, but instead are distillation residues. (4) If so, the observed depletion of super-refractory elements in the Group II CAI's cannot have been accomplished by fractional condensation in the solar nebula. (5) Then this depletion, and a number of other properties of the components of primitive meteoritic material, must be relics of pre-solar system fractionations among different populations of interstellar dust grains.  相似文献   

11.
We report on the petrology, mineralogic properties and contents of major elements and trace elements Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl, U and Zn (determined by radiochemical neutron activation analysis) in Yamato 74160, interpreted as an LL7 chondrite. All properties are consistent with this meteorite having been recrystallized and partially melted locally once at temperatures well above 1090°C under conditions such that some minerals (e.g. plagioclase, euhedral pyroxene, tetrataenite) grew from melt pockets and siderophilic and chalcophilic elements were lost by extraction into eutectic melt that drained away. Inhomogeneous plagioclase compositions and mobile element loss suggest shock as the most likely heat source. Yamato 74160, while inferentially chondritic, is a larval achondrite: even higher temperatures and longer times would have been required to cause the separations necessary to transform it to an identifiable achondrite type.  相似文献   

12.
Abstract High-resolution seismic stratigraphy of the Yamato Basin, Japan Sea, was successfully established using core-log-seismic data integration. The construction of synthetic seismograms by the combination of physical properties and well-log data from the Ocean Drilling Program (ODP) Site 797 was the key to accomplishing the high-resolution seismic stratigraphy. To achieve resolution comparable with well-log data and core lithology, single channel seismic reflection data taken from ODP underway geophysics were reprocessed, and then carefully compared with synthetic seismogram, core and well log profiles to identify seismic units. Ten seismic stratigraphic units were identified at the site, and seismic stratigraphic interpretation was successfully extended from the site to the nearby area along the Yamato Basin margin. The opal-A/opal-CT (biogenic silica/metastable diagenetic silica) boundary has different appearances at places from strong to weak, and mostly discontinuous. One of the significant results achieved from this study is clear distinction of the opal-A/CT boundary from a very strong reflector, which appears at 22 m below the opal-A/CT boundary. Through well-log and physical properties characterization of the different units, resistivity was found to be the best indicator of diatom content and with gamma-ray it also is an indicator of chert layers in the opal-CT zone. Velocity is not greatly effected by diatom ooze in the opal-A zone, however, it shows strong peaks and has an indirect relationship with gamma-ray in the opal-CT zone. Finally, successful correlation of Gamma-ray Attenuation Porosity Evaluator density and resistivity peaks with strong seismic reflectors from upper and lower stratified layers may provide new information on the late Neogene paleoceanography of the Japan Sea in high-resolution scale.  相似文献   

13.
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (δ18Of) that extend from +18.7‰ to +32.8‰ (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25°C to 40°C. The resulting fractionation factors of 1.032 at 25°C and 1.027 at 40°C are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17°C to 29°C in Barbados Ridge sediments and at 33°C to 62°C in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite δ18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17–20°C) or under closed system conditions.  相似文献   

14.
Petrographic and chemical studies of the Qingzhen chondrite strongly suggest that it is the most highly unequilibrated (type 3) enstatite chondrite recognized so far. Qingzhen contains abundant, well-defined chondrules, some of which were incompletely molten during the chondrule formation process. The relict olivine grains within these chondrules contain dusty inclusions of almost pure metallic Fe, which appear to be the in-situ reduction product of the fayalitic component of the olivine. The reduction process presumably took place at the time of chondrule formation and the chondrule precursor material must have been more oxidized than average enstatite chondrite material. We believe that this oxidized material may have formed at the enstatite chondrite formation location in the solar nebula, provided fluctuations in the degree of oxidation of the nebular gas existed at such locations. Reheating of this material under more reducing conditions would lead to the observed reduction of the olivine. Igneous olivines within chondrules always contain detectable amounts of CaO, while relict olivines are essentially CaO-free. This seems to suggest that the relict olivines did not originate during a previous igneous process of chondrule formation and might represent condensation products from the early solar nebula.  相似文献   

15.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

16.
The origin of olivine grains isolated in the matrix of C2 carbonaceous chondrites is an important problem. If these grains are condensates from a solar nebular gas, they contain compositional, isotopic and physical features that further elucidate that process. If, however, they are grains released by the breakup of chondrules, then many important condensation features have been lost during the melting that took place to form chondrules.In evaluating these two possibilities, care must be taken to determine which inclusions in C2 meteorites are actual chondrules and which are aggregates of grains that have never undergone melting. The two main types of aggregates, pyroxene-rich and pyroxene-poor, are forty to fifty times more abundant than chondrules. Four scenarios are presented to account for the kinds of aggregates and isolated grains seen in the Murchison C2 meteorite. An analysis of these scenarios is made in light of olivine crystal morphology, comparison of composition of glass inclusions inside olivine grains with interstitial glass in true chondrules and size distributions of olivines, isolated, in aggregates and in chondrules.It is concluded that no scenario that includes a chondrule-making step can account for the observed population of isolated olivine grains. An origin by direct condensation, partial comminution, aggregation and accretion best accounts for the sizes and morphological features observed.  相似文献   

17.
The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.  相似文献   

18.
提出了一个新的太阳宇宙线日 -地传输的数学模型 ,它包括日冕粒子分布源和行星际传播方程 .根据对太阳宇宙线耀斑黑子群特征和耀斑相的观测 ,提出了多极性黑子湮没的两阶段日冕传输过程和传输方程 ,得到了与观测特征一致的日冕粒子分布源 .日冕传输的第一阶段 ,和太阳耀斑脉冲相的时间相当 ,加速粒子通过扩散很快均匀地分布在耀斑区 ,形成所谓快传播区 .第二阶段 ,加速粒子向快传播区以外的日冕区扩散并向行星际空间逃逸 ,形成慢传播过程 .日冕传输模型的数值结果和日冕传输的观测特征符合 .太阳宇宙线的行星际传播采用三维正交均匀各向异性方程描述 .最后把模型的数值结果与 1 997年 9月 2 4日事件的SOHO(SolarandHeliosphericObservatory)观测资料作了比较 .能较好地符合 .  相似文献   

19.
电离层突发E层与太阳活动的相关性   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对195-1990年3个太阳黑子周期期间不同纬度台站的ES层的临界频率f0ES的观测数据进行统计分析,研究了太阳活动对ES层的强度与出现率的影响,主要结果为:f0ES的年平均值在白天与太阳活动呈强正相关,在夜间呈负相关. 同样,ES的出现率的年变化与太阳活动的关系也是白天呈正相关,夜间呈负相关. 进一步分析表明,上述白天ES层临界频率与太阳活动的正相关性的主要贡献来自于常规E层与太阳活动的强烈相关性. 消除了背景E层电子密度的作用后,ES层的强度在白天与太阳活动呈微弱的正相关,在夜间呈负相关,其相关系数有比较规则的周日变化或半日变化.  相似文献   

20.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号