首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

2.
The concentrations of titanium and rare earth elements (REE) in olivines, orthopyroxenes, clinopyroxenes and spinels from four anhydrous, spinel-bearing peridotite xenoliths have been determined. The distribution of titanium (used as an analogue for the high field strength elements: HFSE) relative to the REE between clinopyroxenes and orthopyroxenes varies as a function of the whole rock composition and modal mineralogy. The distribution coefficients for titanium and the REE in these peridotites do not reflect mineral-melt equilibria. It is believed that subsolidus distribution coefficients for HFSE relative to REE vary with temperature. Ratios of various incompatible elements (e.g., Ti/Eu, Zr/Sm, Hf/Sm and P/Nd) in peridotite minerals differ from those in most primary basalts. However, the abundance ratios of incompatible elements in the bulk peridotite are comparable to those found in modern basalts. Given this and the differing contribution of melt from each phase during melting, near constant ratios of such incompatible elements in primary and primitive basalts and komatiites reflect the buffering of the melt by its residue. These ratios are fixed in the magma during the initial stages of melting because of similar and low distribution coefficients between melt and bulk residue for these element pairs. Differences in the relative abundances of titanium and REE in clinopyroxenes and orthopyroxenes demonstrate that mantle normalized abundance patterns for clinopyroxene are not equivalent to those of the whole rock. Therefore, claims of a widespread HFSE-depleted reservoir in the upper mantle base solely on the relative abundances of incompatible elements in peridotitic clinopyroxenes are invalid.  相似文献   

3.
Peridotites and associated basalts of the External (EL) andInternal (IL) Ligurian terrains of the Northern Apennines havebeen investigated geochemically. The REE and 3d transition elementcompositions of IL peridotites reflect partial fusion of a spinelperidotite protolith probably in the spinel-plagioclase transitionzone. EL peridotites underwent only incipient melting underclosed system conditions. Basalts associated with EL and ILperidotites have petrography and chemistry akin to MORB. Basedon REE, they can be regarded as the products of fractional melting(IL to some extent at higher F with respect to EL). PositiveEu anomalies in most of the studied IL basalts are due to plagioclasefractional crystallization; also, on the basis of Sc, Co, Nicompositions, fractional crystallization of olivine can be recognizedfor both EL and IL lavas. IL basalts are possibly cogeneticwith IL peridotites, but the same cannot be said for EL lavas.  相似文献   

4.
 Mantle peridotites of the Internal Liguride (IL) units (Northern Apennines) constitute a rare example of the depleted lithosphere of the Jurassic Ligurian Tethys. Detailed chemical (ICP-MS and SIMS techniques) and isotopic investigations on very fresh samples have been performed with the major aim to constrain the timing and mechanism of their evolution and to furnish new data for the geodynamic interpretation. The data are also useful to discuss some general geochemical aspects of oceanic-type mantle. The studied samples consist of clinopyroxene-poor spinel lherzolites, showing incipient re-equilibration in the plagioclase-facies stability field. The spinel-facies assemblage records high (asthenospheric) equilibration temperatures (1150–1250° C). Whole rocks, and constituent clinopyroxenes, show a decoupling between severe depletion in highly incompatible elements [light rare earth elements (LREE), Sr, Zr, Na, Ti] and less pronounced depletion in moderate incompatible elements (Ca, Al, Sc, V). Bulk rocks also display a relatively strong M(middle)REE/H(heavy)REE fractionation. These compositional features indicate low-degree (<10%) fractional melting, which presumably started in the garnet stability field, as the most suitable depletion mechanism. In this respect, the IL ultramafics show strong similarity to abyssal peridotites. The Sr and Nd isotopic compositions, determined on carefully handpicked clinopyroxene separates, indicate an extremely depleted signature (87Sr/86Sr=0.702203–0.702285; 143Nd/144Nd=0.513619–0.513775). The Sm/Nd model ages suggest that the IL peridotites melted most likely during Permian times. They could record, therefore, the early upwelling and melting of mid ocean ridge basalt (MORB) type asthenosphere, in response to the onset of extensional mechanisms which led to the opening of the Western Tethys. They subsequently cooled and experienced a composite subsolidus evolution testified by multiple episodes of gabbroic intrusions and HT-LP retrograde metamorphic re-equilibration, prior to their emplacement on the sea floor. The trace element chemistry of IL peridotites also provides useful information about the composition of oceanic-type mantle. The most important feature concerns the occurrence of Sr and Zr negative anomalies (relative to “adjacent” REE) in both clinopyroxenes and bulk rocks. We suggest that such anomalies reflect changes in the relative magnitude of Sr, Zr and REE partition coefficients, depending on the specific melting conditions. Received: 15 February 1995/Accepted: 4 August 1995  相似文献   

5.
MORB suites display variations in their chemical differentiation trends which are closely related to the incompatible element enrichment of the basalts. We examine suites of primitive to evolved basalts from the Pacific-Nazca Ridge at 28° S (mostly depleted); from the Juan Fernandez microplate region (depleted) and from the Explorer Ridge, northeast Pacific (mostly enriched). Trends for incompatible element enriched MORBs consistently show less depletion of Al2O3 and less enrichment of FeO when plotted on MgO variation diagrams.Least squares modeling indicates that enriched basalts have undergone less plagioclase crystallization than depleted basalts especially in the early stages of differentiation. Using thermodynamic modelling, we show that variations between MORB differentiation trends result largely from differences in the major element chemistry and H2O content of primary magmas. Our chosen enriched and depleted near-primary magmas are similar in major element chemistry but the enriched near-primary magma has higher H2O and lower Al2O3 than the depleted near-primary magma. The MORB crystallization sequence is: olivineolivine+plagioclase olivine+plagioclase+high-Ca pyroxene; and the separate and combined effects of lower Al2O3 and higher H2O are to cause plagioclase to crystallize later (lower temperature), and to make the interval of olivine+plagioclase crystallization shorter. As a result, enriched differentiates have higher Al2O3 and lower FeO than depleted MORBs at a given MgO content, even though their parents' Al2O3 is lower. Crystallization of enriched basalts at higher pressure than depleted basalts is not able to account for differences between the differentiation trends because the proportion of plagioclase is higher during three-phase crystallization at high pressure.The variations in trends do not depend on geographic location and thus are superimposed on any regional variations in MORB chemistry or mantle source. Nor are they related to spreading rate. Depleted basalts from the fast-spreading 28° S and Juan Fernandez ridges have differentiation trends similar to depleted basalts from the medium-spreading Galapagos Spreading Center, whereas differentiation trends for enriched basalts from the medium-spreading Explorer Ridge are quite different. Fe3+/Fetotal is similar (and quite low) for enriched and depleted basalts, indicating that neither oxidation state nor early magnetite crystallization are important.  相似文献   

6.
New data on metasomatic processes in the lithospheric mantle in the central part of the Arkhangelsk diamondiferous province (ADP) are presented. We studied the major- and trace-element compositions of minerals of 26 garnet peridotite xenoliths from the V. Grib kimberlite pipe; 17 xenoliths contained phlogopite. Detailed mineralogical, petrographic, and geochemical studies of peridotite minerals (garnet, clinopyroxene, and phlogopite) have revealed two types of modal metasomatic enrichment of the lithospheric-mantle rocks: high temperature (melt) and low-temperature (phlogopite). Both types of modal metasomatism significantly changed the chemical composition of the peridotites. Low-temperature modal metasomatism manifests itself as coarse tabular and shapeless phlogopite grains. Two textural varieties of phlogopite show significant differences in chemical composition, primarily in the contents of TiO2, Cr2O3, FeO, Ba, Rb, and Cs. The rock-forming minerals of phlogopite-bearing peridotites differ in chemical composition from phlogopite-free peridotites, mainly in higher FeO content. Most garnets and clinopyroxenes in peridotites are the products of high-temperature mantle metasomatism, as indicated by the high contents of incompatible elements and REE pattern in these minerals. Fractional-crystallization modeling gives an insight into the nature of melts (metasomatic agents). They are close in composition to picrites of the Izhmozero field, basalts of the Tur’ino field, and carbonatites of the Mela field of the ADP. The REE patterns of the peridotite minerals make it possible to determine the sequence of metasomatic enrichment of the lithospheric mantle beneath the V. Grib kimberlite pipe.  相似文献   

7.
粗粒与剪切结构橄榄岩捕虏体及其单斜辉石微量元素对比   总被引:1,自引:0,他引:1  
地山西栖霞具不同结构的“干”灾晶石相橄榄岩进行了全岩化学、微量元素,矿物成分和单斜辉石微量元素分析和对比。表明在橄榄岩从粗粒结构向剪切结构的转化中,随着变质变形作用的增强存在着复杂的熔/流体的加入富集和熔体的提取亏损作用;交代介质属具强渗透性的SiO2不饱和的硅酸盐碳酸岩熔体。同时发现不同结构橄榄岩中单斜辉石的REE与其全岩的REE程度有如下的关系;粗粒结构橄榄岩石中矿物与岩石的差别量大,但REE的配合分形可以反映全岩的情况;剪切结构橄榄岩中两者的差别较小。其它高度不相容微量元素可能主要赋存粒间组分或/和矿物流体包裹体中。  相似文献   

8.
The early miocene Tecuya volcanic center in the southern San Joaquin basin of California consists of flows and tuffs of basalt and rhyolite that erupted, closely spaced in time, in both submarine and subaerial conditions. The rhyolites are overlain by the basalts and constitute approximately 45% of a total of at least 180 km3 of the Tecuya volcanic rocks. The basalts have Nd(t) values of +2 to +6 and (87Sr/86Sr)i values between 0.7035 and 0.7052. These rocks show LREE enrichment [(La/Yb)N =2.4–5.5; La=28–150 times chondrite] and higher Th/U, Th/Ta, Rb/Ta, Ba/Ta, Cs/Rb but lower K/Rb ratios than MORB. Combined major- and trace-element, and Sr–Nd isotopic data suggest the involvement of subcontinental lithosphere, depleted upper mantle source (MORB), and local continental crust in the basalt petrogenesis. Nd(t) values in rhyolites vary from +1.5 to +3.7 while (87Sr/86Sr)i ratios range from 0.7051 to 0.7064. The rhyolites display LREE enrichment [(La/Yb)N=10; La=100 times chondrite] along with a distinct negative Eu anomaly (Eu/Eu*=0.75) and depletion of Ti and P. Mixing relations in (87/86Sr)i Nd(t) space among basalts, rhyolites, and local continental crust indicate that the Tecuya rhyolites were produced by assimilation of variable amounts of continental crust by MORB-related magmas and subcontinental lithosphere-derived melts. This conclusion is supported by the synchroneity of Tecuya volcanism at 22 Ma with interaction of a segment of the East Pacific Rise along the southern California margin. The Tecuya volcanic rocks thus provide an example for the generation of rhyolitic melts owing to crustal assimilation by basaltic melts during mid-oceanic ridge-induced magmatism along a continental margin.  相似文献   

9.
Many of the coarse-grained peridotite inclusions in basanitesfrom Nunivak Island, Alaska, contain amphibole and a smallerfraction also contain phlogopite and apatite. All of these peridotiteshave light REE/heavy REE abundance ratios greater than chondritesand many have abundances of K, Rb, Sr, Ba and light REE whichexceed estimates for primitive mantle. On the basis of mineraltextures and compositions we infer that the clinopyroxene, amphibole,phlogopite and apatite equilibrated with a metasomatic fluid.Isotopic (Sr and Nd) ratios and parent-daughter abundance datafor the coarse-grained peridotites constrain the age of themetasomatism to be less than 200 million years. Associated amphibole pyroxenite inclusions are not metasomatized;these inclusions probably formed as crystal segregates froman alkalic magma. Both pyroxenites and coarse-grained peridotitesare isotopically similar to basalts from Nunivak Island. Usingthese data, we propose a model in which the metasomatized peridotiteswere wallrocks located adjacent to the pyroxenites, and thatmetasomatism of these peridotites was caused by the infiltrationof a residual silicate melt or volatile-rich fluid derived fromthe parental magma of the pyroxenites; i.e. the metasomatismwas a consequence of basaltic magmatism. Furthermore, the parentalmagma of the pyroxenites was probably petrogenetically relatedto the Nunivak volcanism. REE modelling of fluids in equilibriumwith clinopyroxenes from the coarse-grained peridotites is consistentwith this model.  相似文献   

10.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

11.
 Lherzolite xenoliths in Miocene to Pleistocene basalts from five sites in the Hamar-Daban range in southern Siberia provide sampling of the mantle close to the axis of the Baikal rift. These anhydrous spinel lherzolites commonly have foliated fabrics and spongy rims around clinopyroxene, and many contain accessory feldspar. The feldspar occurs in reaction zones adjacent to spinel and orthopyroxene (where it appears to have been formed by the reaction: spl+opx+cpx+fluid →fs+ol) and less commonly as thin, irregular veins. The feldspars have variable compositions but are generally alkali-rich; their K2O content ranges from 0.3 to 11.2% and is much higher than in plagioclase from orogenic lherzolites (usually <0.1% K2O). The temperature range for the Hamar-Daban xenolith suite (950–1010° C) is more restricted than for spinel peridotite xenoliths from other occurrences in the Baikal area. The feldspar-bearing lherzolites yield equilibration temperatures similar to or slightly lower than feldspar-free ones. The majority of the Hamar-Daban lherzolites are fertile and clinopyroxene-rich, as for most other occurrences in the Baikal region. Trace element compositions of selected xenoliths and their clinopyroxenes were determined by ICP-MS, INAA and proton microprobe. Feldspar-bearing xenoliths are enriched in alkalies indicating that feldspar formation is associated with addition of material and is not simply due to isochemical phase changes. Most xenoliths and their clinopyroxenes studied are depleted in light REE and have contents of Sr, Zr and Y common for fertile or moderately depleted mantle peridotites. Few are moderately enriched in LREE, Sr, Th and U. Sr-Nd isotope compositions of clinopyroxenes indicate long-term depletion in incompatible elements similar to unmetasomatised xenoliths from other occurrences south and east of Lake Baikal. The formation of feldspar and of spongy aggregates after clinopyroxene, and the enrichment in alkalies appear to be recent phenomena related to infiltration of an alkali-rich, H2O-poor fluid into spinel peridotites. Received: 20 March 1995 / Accepted: 26 June 1995  相似文献   

12.
ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (∼0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt–rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
西藏吉定蛇绿岩地球化学特征及其构造指示意义   总被引:3,自引:2,他引:1  
陈根文  刘睿  夏斌  邓腾 《岩石学报》2015,31(9):2495-2507
吉定蛇绿岩位于雅鲁藏布江蛇绿岩带的中段,是该带保存较好的蛇绿岩之一,通过对该岩体的研究及与附近蛇绿岩剖面的对比有助于恢复早白垩世雅鲁藏布江蛇绿岩带的演化过程。吉定蛇绿岩包括玄武岩、辉绿岩、堆晶岩及地幔橄榄岩四个岩石单元。壳层岩石岩浆结晶顺序为:橄榄石→单斜辉石→斜长石,代表湿岩浆系统分异。吉定蛇绿岩壳层熔岩(玄武岩和辉绿岩)Ti O2含量为0.87%~1.45%,平均1.1%,与印度洋N-MORB玻璃(1.19%)相似。REE配分模式具有明显的LREE亏损特征,稀土配分模式与典型的大洋中脊玄武岩相似。但其微量元素蛛网图上表现为富集LILE,而亏损HFSE,并具有较高LILE/HFSE比值特征,与俯冲带上的(SSZ)蛇绿岩相似。蛇绿岩熔岩在岩石地球化学上表现出既亲MORB,又具部分IAB的特征。结合区域上大竹卡、得几等蛇绿岩岩石及地球化学资料对比分析,提出吉定蛇绿岩形成于在洋内俯冲带上发育起来的弧后盆地,并提出日喀则地区早白垩世洋壳演化的解释模式:雅鲁藏布江中段蛇绿岩至少包含三种组分特征的蛇绿岩体,其代表性剖面分别是吉定,得村和大竹卡,分别形成于近俯冲带的弧后盆地、弧前盆地和弧后盆地,这些洋壳共同组成早白垩世时期的与特提斯洋俯冲带斜交的一条分段发育的洋中脊。  相似文献   

14.
Twenty spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes. The xenoliths are texturally diverse, including protogranular, porphyroclastic, equigranular and poikilitic textures which can generally be correlated with geochemical features. Protogranular xenoliths are relatively undepleted in Ca, Al, Ti and Na, whereas poikilitic xenoliths are more refractory. LREE-depleted patterns. and MORB-like Nd and Sr values are associated with protogranular peridotites. In contrast, xenoliths with complex textures are generally LREE-enriched. Much of the isotopic variation in the suite (Sr=–20.4 to +10.4, +Nd=+1.8 to +13.7) can be related to interaction between protogranular mantle and melts resembling the host alkali basalts, but a third (high Sr) component may be due to Miocene subduction beneath the region.  相似文献   

15.
Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively undepleted mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.  相似文献   

16.
The course of crystallization of basalt forming clinopyroxenes in the olivine-basalt-hawaiite-mugearite-trachyte-and basanitoid (= basanite)-series from the Hocheifel area (Western Germany) has been presented by the author in two earlier papers (Hucken-holz, 1965 a, 1965 b). The present paper deals with the evolution of clinopyroxenes from the ankaramites in the same area. The ankaramites are richer in olivines and clinopyroxenes than the normal olivine basalts and may be a product of accumulation of olivines and clinopyroxenes in an olivine basalt magma. The first clinopyroxene formed in the ankaramites is a greenish chromian salite Ca47.1 Mg40.9 Fe12.0 which is preserved in the cores of the phenocrysts. Strongly zoned brown titansalite Ca45 Mg42Fe13 surrounds the chromian salite (HF 5) or appears in independent microphenocrysts (HF53). The groundmass clinopyroxene is titansalite Ca45Mg37Fe18 with a small optic axial angle. Phenocrysts of nickel-rich olivine Fe12–14 and chrome spinell were formed together with chromium clinopyroxene. The same minerals together with orthopyroxenes have been observed in the olivine basalts, hawaiites and basanitoids (= basanites). This paragenesis indicates high pressure and high temperature in the alkali basalts of the Hocheifel during an initial stage of magmatic evolution. With the decrease of pressure, mineral reaction occurred with the alkali basalt melt. The high pressure clinopyroxenes of the ankaramites and basanitoids (= basanites) were changed to a larger extent than the clinopyroxenes of the olivine basalts and hawaiites or were completely destroyed (HF 53) because they are in contact with the hot magma for a longer period of time. This favours the reaction between the solids and the melt, and the high pressure garnet and/or enstatite components in the clinopyroxenes are substituted by Ca-Tschermak’s and titanaugite molecules.   相似文献   

17.
Mantle peridotites of the External Liguride (EL) Units (Northern Apennines) mainly consist of fertile spinel-lherzolites partially recrystallized to plagioclase-facies assemblages, and are consequently appropriate to investigate the interphase element partitioning related to the transition from spinel- to plagioclase-facies stability field. Evidence for the development of the plagioclase-facies assemblage is mainly given by: (1) large exsolution lamellae of orthopyroxene and plagioclase within spinel-facies clinopyroxene; (2) plagioclase rims around spinel; (3) granoblastic domains made up of olivine+plagioclase±clino-and orthopyroxene. In situ major and trace [REE (rare-earth elements), Ti, Sc, V, Cr, Sr, Y, Zr and Ba] element mineral analyses have been performed, by electron and ion probe, on selected samples which show the progressive development of the plagioclase-bearing assemblage. The main compositional variations observed during the change from spinel- to plagioclase-facies minerals are as follows: (1) clinopyroxenes decrease in Al, Na, Sr, Eu/Eu* and increase in Y, V, Sc, Cr, Zr and Ti; (2) amphiboles decrease in Eu/Eu*, Sr, Ba and increase in Zr and V; (3) spinels decrease in Al and increase in Cr and Ti. The most striking feature is the decoupling in the behaviour of similarly incompatible elements (D about 0.1) in clinopyroxene, e.g. Sr decrease is mirrored by Zr increase. Massbalance calculations indicate that the trace element interphase redistribution documented in the EL peridotites occurred in a closed system and in response to the metamorphic reaction governing the transition from the spinel- to the plagioclase-facies stability field. The observed element partitioning reveals, moreover, that subsolidus re-equilibration processes in the upper mantle produce HFSE (high-field-strength element)/REE fractionation in minerals, which must be evaluated for a reliable determination of mineral-melt distribution coefficients. The results of this study furnish evidence for subsolidus metamorphic evolution during decompression, without concomitant partial melting processes. This is consistent with the interpretation that the EL peridotites represent subcontinental lithospheric mantle emplaced at the surface in response to lithospheric thinning and tectonic denudation mechanisms related to the Triassic-Jurassic rifting of the Ligure-Piedmontese basin.  相似文献   

18.
李平  王洪亮  徐学义  陈隽璐  过磊  奚仁刚 《岩石学报》2014,30(12):3553-3568
新疆西准噶尔北部地区的早泥盆世马拉苏组出露有少量富钠低钾的拉斑质中基性熔岩,这些分布于谢米斯台断裂北侧的玄武安山岩和玄武岩多呈夹层状断续产出于火山碎屑岩之中。马拉苏中基性熔岩的Mg#与主、微量元素协变关系及Th-Th/Nd图反映了其并非同源岩浆演化的结果。马拉苏火山岩中的玄武安山岩富集LILE、亏损HFSE,具有较高的Th含量及较低的Hf/Th和(Nb/Th)PM比值,显示出弧火山岩的地球化学特征。其中的玄武岩则具有略为平坦的稀土元素分配样式,较低的Th含量及较高的Hf/Th和(Nb/Th)PM比值,此同MORB地球化学特征极为相似;虽然其也显示有轻微的LILE富集、HFSE亏损,但是较高的La/Nb比值则暗示这同地壳或俯冲物质组分的卷入有关,且一系列构造环境判别图解也进一步印证了马拉苏组内的玄武岩应属似MORB基性熔岩。此外,两类岩石的高场强元素比值Zr/Nb、Hf/Ta同全球平均大洋中脊玄武岩的相应比值极为接近,反映了马拉苏组中基性火山岩的物质源区主体均为MORB地幔物质源区。La/Yb-Gd/Yb原始地幔标准化比值的模拟计算进一步显示了马拉苏组玄武安山岩与受改造(俯冲沉积物或地壳物质的混染)的石榴子石或尖晶石-石榴子石地幔橄榄岩物质源区的部分熔融作用有关,而似MORB型玄武岩则源自尖晶石地幔橄榄岩源区的部分熔融。结合区内同期的蛇绿岩、火山岩和碱性花岗岩的地球化学研究,我们可以进一步推断此类兼具有似MORB和弧火山岩地球化学特征的早泥盆世马拉苏火山岩应当是西准噶尔地块北部在早古生代受后期俯冲作用影响下经历弧后扩张形成的火山-岩浆地质记录。  相似文献   

19.
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr–Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr–Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300–400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe 2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.  相似文献   

20.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号