首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hayabusa‐returned samples offer a unique perspective for understanding the link between asteroids and cosmomaterials available in the laboratory, and provide insights on the early stages of surface space weathering. This study characterizes the mineralogy and the extent of space weathering of the three Itokawa particles RA‐QD02‐0163, RA‐QD02‐0174, and RA‐QD02‐0213 provided by JAXA to our consortium. We report here a series of results based on nondestructive analyses through visible‐near‐infrared reflectance and Raman spectroscopy. Results were obtained on the raw particles, both in their original containers and deposited on diamond windows. Identification of the minerals, characterization of their elemental compositions, and measurements of their relative abundances were led through Raman spectroscopy in punctual and automatic mode. Reflectance spectra in the visible and near‐IR wavelengths constrain the mineralogy of the grains and allow direct comparison with the surface of Itokawa. The spectra reflect the extent of space weathering experienced by the three particles. Particle RA‐QD02‐0163 consists of a heterogeneous mixture of minerals: olivine (Fo76) dominates an assemblage with both Ca‐rich (En50, Wo50) and Ca‐poor (En85) pyroxenes. The elemental compositions of the silicates are consistent with those previously reported for distinct Hayabusa particles. Particles RA‐QD‐0174 and RA‐QD02‐0213 are solely composed of olivine, whose chemical composition is similar to that observed in RA‐QD02‐0163. It has been previously shown that the S‐type asteroid 25143 Itokawa is a breccia of poorly equilibrated LL4 and highly equilibrated LL5 and LL6 materials. The three particles studied here can be related to the least metamorphosed lithology (LL4) based on the high forsterite content of the olivine. Neither carbonaceous matter nor hydrated minerals were detected through Raman on the three allocated particles. The NIR‐VIS reflectance (incidence = 45°, light collection at e = 0°) spectra of the three particles, in particular the 1 μm band, are consistent with the presence of both olivine and pyroxene detected via Raman. The spectra of particles RA‐QD02‐0163 and RA‐QD02‐0213 are also fully compatible with the ground‐based observations of asteroid (25143) Itokawa in terms of both spectral features and slope. By contrast, particle RA‐QD02‐0174 has a similar 1 μm band depth but higher (redder) spectral slope than the surface of Itokawa. This probably reveals a variable extent of space weathering among the regolith particles. RA‐QD02‐0174 may contain a higher amount of nanophase metallic iron and nanophase FeS. Such phases are products by space weathering induced by solar wind, previously detected on other Itokawa particles.  相似文献   

2.
Abstract— We present June 2004 radar images of asteroid 25143 Itokawa (1998 SF36) that improve upon the longitude‐latitude coverage of images obtained in 2001 by Ostro et al. (2004) and use the 2001–2004 data to refine that paper's constraints on Itokawa's shape. The 2004 images, the first of the asteroid's southern side, look distinctly different from the 2001 images, revealing leading edges that are much more curved and rugged than the nearly convex leading edges seen at northern latitudes in 2001. Itokawa is shaped like a slightly asymmetrical, bent, lumpy ellipsoid with dimensions along the principal axes within 10% of 594 times 320 times 288 m. To illustrate the uncertainty space associated with shape reconstruction from images with suboptimal orientational coverage, we present two alternative three‐dimensional models of the object.  相似文献   

3.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   

4.
Abstract— Based on recent progress in simulating space weathering on asteroids using pulse‐laser irradiation onto olivine and orthopyroxene samples, detailed analyses of two of the A and R type asteroid reflectance spectra have been performed using reflectance spectra of laser‐treated samples. The visible‐near‐infrared spectrum of olivine is more altered than that of pyroxene at the same pulse‐laser energy, suggesting that olivine weathers more rapidly than orthopyroxene in space. The same trend can be detected from reflectance spectra of the asteroids, where the more olivine an asteroid has, the redder its 1 μm band continuum can become. Comparison of the 1 μm band continuum slope and the 2/1 μm band area ratio between the asteroids and olivine and pyroxene samples (including the laser‐treated ones) suggests that asteroids may be limited in the degree of space weathering they can exhibit, possibly due to the short life of their surface regolith. Their pyroxenes may also have a limited chemical composition range. Fitting the visible continuum shape and other parts of the spectra (especially the 2μm part) has been impossible with any combination of common rock‐forming minerals such as silicates and metallic irons. However, this study shows, for the first time, excellent fits of reflectance spectra of an A asteroid (Aeternitas) and an R asteroid (Dembowska), including their visible spectral curves, band depths and shapes, and overall continuum shapes. Our results provide estimates that Aeternitas consists of 2% fresh olivine, 93% space‐weathered olivine, 1% space‐weathered orthopyroxene, and 4% chromite, and that Dembowska consists of 1% fresh olivine, 55% space‐weathered olivine, and 44% space‐weathered orthopyroxene. These results suggest that space weathering effects maybe important to the interpretation of asteroid reflectance spectra, even those with deep silicate absorption bands. Modified Gaussian model deconvolutions of the laser‐irradiated olivine samples show that their identity as olivine remained. The most recent submicroscopic mineralogical analyses have revealed that the laser‐irradiated olivine samples contain nanophase iron particles similar to those in space‐weathered lunar samples.  相似文献   

5.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

6.
By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as ≈0.01 μm−1×log10t. This empirical fit is valid only for 2.5?t?3000 My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at ∼1-μm wavelengths than an ∼5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that reach the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.  相似文献   

7.
In this study, the three‐dimensional (3‐D) microstructure of 48 Itokawa regolith particles was examined by synchrotron microtomography at SPring‐8 during the preliminary examination of Hayabusa samples. Moreover, the 3‐D microstructure of particles collected from two LL6 chondrites (Ensisheim and Kilabo meteorites) and an LL5 chondrite (Tuxtuac meteorite) was investigated by the same method for comparison. The modal abundances of minerals, especially olivine, bulk density, porosity, and grain size are similar in all samples, including voids and cracks. These results show that the Itokawa particles, which are surface materials from the S‐type asteroid Itokawa, are consistent with the LL chondrite materials in terms of not only elemental and isotopic composition of the minerals but also 3‐D microstructure. However, we could not determine whether the Itokawa particles are purely LL5, LL6, or a mixture of the two. No difference between the particles collected from Rooms A and B of the sample chamber, corresponding to the sampling sequence of the spacecraft's second and first touchdowns, respectively, was detected because of the statistically small amount of particles from Room B.  相似文献   

8.
The surfaces of airless bodies, such as the Moon and asteroids, are subject to space weathering, which alters the mineralogy of the upper tens of nanometers of grain surfaces. Atom probe tomography (APT) has the appropriate 3‐D spatial resolution and analytical sensitivity to investigate such features at the nanometer scale. Here, we demonstrate that APT can be successfully used to characterize the composition and texture of space weathering products in ilmenite from Apollo 17 sample 71501 at near‐atomic resolution. Two of the studied nanotips sampled the top surface of the space‐weathered grain, while another nanotip sampled the ilmenite at about 50 nm below the surface. These nanotips contain small nanophase Fe particles (~3 to 10 nm diameter), with these particles becoming less frequent with depth. One of the nanotips contains a sequence of space weathering products, compositional zoning, and a void space (~15 nm in diameter) which we interpret as a vesicle generated by solar wind irradiation. No noble gases were detected in this vesicle, although there is evidence for 4He elsewhere in the nanotip. This lunar soil grain exhibits the same space weathering features that have been well documented in transmission electron microscope studies of lunar and Itokawa asteroidal regolith grains.  相似文献   

9.
The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color–color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color–color diagrams, if exposed to the same amount of irradiation.  相似文献   

10.
We observed cross sectional ultra‐thin sections near the surface of 12 particles recovered from the S‐type asteroid Itokawa by the Hayabusa spacecraft in 2010, using spherical aberration–corrected STEM and conventional TEM. Although their mineralogy is almost identical to the equilibrated LL chondrites and therefore basically anhydrous, micrometer‐to‐submicrometer‐sized sylvite was identified on the surface of Itokawa particle RA‐QD02‐0034. Separately, micrometer‐sized halite was also identified on the surface of Itokawa particle RA‐QD02‐0129. Detailed inspection of the sample processing procedures at the JAXA's Planetary Materials Sample Curation Facility and textural observation of the sylvite and halite indicate that they were clearly present on two Itokawa particles before they were removed from Clean Chamber #2 at JAXA. However, there is no direct evidence for their extraterrestrial origin at present. If the sylvite and halite are extraterrestrial, their presence suggests that they may be more abundant on the surface of S‐type asteroids than previously thought.  相似文献   

11.
We present the surface mapping of the southern hemisphere of Asteroid (4) Vesta obtained from Hubble Space Telescope (HST). From 105 images of Vesta through four filters in the wavelengths best to characterize the 1-μm pyroxene band, we constructed albedo and color-ratio maps of Vesta. These new maps cover latitudes −50° to +20°. The southern hemisphere of Vesta displays more diverse albedo and color features than the northern hemisphere, with about 15 new albedo and color features identified. The overall longitudinal albedo and color variations in the southern hemisphere are comparable with that of the northern hemisphere, with a range of about ±20% and ±10%, respectively. The eastern hemisphere is brighter and displays more diogenitic minerals than the western hemisphere. Correlations between 1-μm band depth and band width, as well as between 1-μm band depth and albedo, are present on a global scale, attributed to pyroxene composition variations. The lack of correlations between albedo and the spectral slope indicates the absence of globalized space weathering. The lack of a global correlation between 1-μm band depth and topography suggests that the surface composition of Vesta is not completely controlled by a single impact. The distribution of compositional variation on Vesta suggests a possible large impact basin. Evidence of space weathering is found in regions, including the bright rim of the south-pole crater where the steepest gravitational slope on Vesta is, and a dark area near a gravitationally flat area. We propose to divide the surface of Vesta into six geological units different from the background according to their 1-μm absorption features and spectral slopes, including two eucrite-rich units, a low-Ca eucrite unit, a diogenite-rich unit, a space weathered unit, and a freshly exposed unit. No evidence of olivine-rich area is present in these data.  相似文献   

12.
In March 2001, the Hayabusa spacecraft target, Asteroid 25143 Itokawa, made its final close approach to Earth prior to the spacecraft's launch. We carried out an extensive observing campaign from January to September 2001 to better characterize this near-Earth asteroid. Global physical properties of the surface of Itokawa were characterized by analyzing its photometric properties and behavior. Results included here capitalize on analysis of broadband photometric observations taken with a number of telescopes, instruments, and observers. We employed a Hapke model to estimate the surface roughness, single particle scattering albedo, single particle scattering characteristics, phase integral, and geometric and bond albedo. We find that this asteroid has a higher geometric albedo than average main belt S-class asteroids; this is consistent with results from other observers. The broadband colors of Itokawa further support evidence that this is an atypical S-class asteroid. Broadband colors show spectral characteristics more typically found on large-diameter main-belt asteroids believed to be space-weathered, suggesting the surface of this small diameter, near-Earth asteroid could likewise be space-weathered.  相似文献   

13.
Records of space weathering are important for understanding the formation and evolution of surface regolith on airless celestial bodies. Current understanding of space weathering processes on asteroids including asteroid‐4 Vesta, the source of the howardite–eucrite–diogenite (HED) meteorites, lags behind what is known for the Moon. In this study, we studied agglutinates, a vesicular glass‐coating lithic clast, and a fine‐grained sulfide replacement texture in the polymict breccia Northwest Africa (NWA) 1109 with electron microscopy. In agglutinates, nanophase grains of FeNi and FeS were observed, whereas npFe0 was absent. We suggested that the agglutinates in NWA 1109 formed from fine‐grained surface materials of Vesta during meteorite/micrometeorite bombardment. The fine‐grained sulfide replacement texture (troilite + hedenbergite + silica) should be a result of reaction between S‐rich vapors and pyroxferroite. The unique Fe/Mn values of relict pyroxferroite indicate a different source from normal HED pyroxenes, arguing that the reaction took place on or near the surface of Vesta. The fine‐grained sulfide replacement texture could be a product of nontypical space weathering on airless celestial bodies. We should pay attention to this texture in future returned samples by asteroid exploration missions.  相似文献   

14.
High-resolution imaging acquired with the Near Earth Asteroid Rendezvous Shoemaker (NEAR Shoemaker) spacecraft is used to elucidate the spectral properties and spatial distribution of color units on Asteroid 433 Eros. Previous workers mapped four distinct types of color units on the surface (bright streaks, dark soils, ponded materials, average regolith). These units exhibit albedo and color boundaries but there is no evidence to indicate they represent distinct rock types. Rather the units are thought to show evidence of complex regolith transport and sorting processes. Here we report the results of a comprehensive study of all viable color MultiSpectral Imager (MSI) data to identify and characterize the distribution and nature of color units across the whole asteroid. Due to a spacecraft upset that resulted in contamination of the MSI optics, color images are affected with a scattered light problem that hampers interpretation of subtle color contrasts, even after a rigorous remediation. To constrain interpretations of the MSI color data we characterize this residual scattered light and demonstrate how complete correction would affect derived color ratios. Results of our comprehensive study are consistent with previous mapping—confirming that bright streaks, average regolith and dark soils fall on a mixing line, consistent with space weathering effects. We find that the ponded deposits do not fall on this putative mixing line. The color and reflectance of the ponded deposits are consistent with some combination of compositional, grain size and maturity variations from the average regolith. Additionally we show that spectral separation of the four units on ratio plots would only increase with full removal of residual scattered light, especially for features that are small in terms of pixels. Global analysis of the Eros color units illustrates complex regolith processes and grain sorting that may hold clues to understanding space weathering processes and the link between asteroids and meteorites.  相似文献   

15.
The Japanese spacecraft Hayabusa is planed to reach the Asteroid Itokawa in September 2005, and to bring back some samples of its surface to Earth in 2007. We have studied the future possible evolution of this asteroid by integrating numerically over 100 Myr a set of 39 initially indistinguishable orbits (clones), obtained either by small variations of the nominal initial conditions, or by using different computers (introducing different round-off errors). The results indicate that an Earth impact of this 500-m-size asteroid is likely within a million years, which is only a factor of four larger than the average impact frequency of asteroids of this size. The mission Hayabusa may thus sample a good candidate for being among the next 500-m-size Earth impactors.  相似文献   

16.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   

17.
We report the B abundances and isotopic ratios of two olivine grains from the S‐type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic‐ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic‐ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.  相似文献   

18.
Space weathering and the interpretation of asteroid reflectance spectra   总被引:1,自引:0,他引:1  
Michael J. Gaffey 《Icarus》2010,209(2):564-574
Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.  相似文献   

19.
Abstract— –In March 2001, asteroid (25143) Itokawa, the target of the Japanese Hayabusa spacecraft mission, was in a favorable viewing geometry for ground‐based telescopic study. Visible/near‐infrared (VNIR) spectra (~~0.48 to 0.9 μm) obtained on March 24, 26, and 27 UT, and near‐infrared (NIR) spectra (~~0.75 to 2.5 μm) obtained on March 10, 11, 12, 23, and 24 UT collectively show absorption features centered near 1.0 and 2.0 μm, which are indicative of olivine and pyroxene. Analyses of these absorption features indicate an abundance ratio of olivine to pyroxene of approximately 75:25 ± 5, respectively, with no significant variation in the relative abundance of these minerals across its surface on a regional scale. The band center positions indicate that the mean pyroxene chemistry is ~~Wo14 ± 5Fs43 ± 5. There appear to be at least two pyroxene components: primarily a low‐Ca orthopyroxene accompanied by a spectrally significant (~~15–20%) high Fe‐rich pigeonite phase. The mean pyroxene composition is significantly more Fe‐rich than the Fs14–26 range found in ordinary chondrites. These pyroxene compositions are suggestive of phases crystallized from partial melts. This would indicate that the parent body of (25143) Itokawa reached temperatures sufficient to initiate partial melting (~~1050 to 1250 °C), but that it did not attain the degree of melting required for significant melt mobilization and efficient segregation of the basaltic melt component from the unmelted residual olivine portion. Itokawa's spectral band parameters place it near the S(III)/S(IV) boundary, but within the S(III) taxonomic field. In meteoritic nomenclature, Itokawa would be most analogous to an olivine‐rich primitive achondrite. Alternatively, if the high Fs value is not related to partial melting, then Itokawa could also represent a rare atypical LL chondrite, or a previously unsampled oxidized Fe‐rich chondritic‐like assemblage.  相似文献   

20.
Abstract— The howardite‐eucrite‐diogenite (HED) clan is a group of meteorites that probably originate from the asteroid Vesta. Some of them are complex breccias that contain impact glasses whose compositions mirror that of their source regions. Some K‐rich impact glasses (up to 2 wt% K2O) suggest that in addition to basalts and ultramafic cumulates, K‐rich rocks are exposed on Vesta's surface. One K‐rich glass (up to 6 wt% K2O), with a felsic composition, provides the first evidence of highly differentiated K‐rich rocks on a large asteroid. They can be compared to the rare lunar granites and suggest that magmas generated in a large asteroid are more diverse than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号