首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
赵佳  赵刚 《天文学进展》2012,30(1):48-63
自1995年第一颗类太阳恒星周围的系外行星发现以来,随着已发现的系外行星数目的增多,对系外行星性质的统计分析变得重要和有意义。截至2011年6月9日,共发现系外行星555颗。以这些系外行星的轨道参数为依据,对系外行星的性质进行统计分析,得出了一些有意义的结论。同时简要介绍现有的行星形成与演化模型并依据得出的行星统计性质对其进行检验,这对于系外行星的进一步探测具有一定的指导作用。  相似文献   

2.
We have performed N-body simulation on final accretion stage of terrestrial planets, including the effect of damping of eccentricity and inclination caused by tidal interaction with a remnant gas disk. As a result of runway and oligarchic accretion, about 20 Mars-sized protoplanets would be formed in nearly circular orbits with orbital separation of several to ten Hill radius. The orbits of the protoplanets would be eventually destabilized by long-term mutual gravity and/or secular resonance of giant gaseous planets. The protoplanets would coalesce with each other to form terrestrial planets through the orbital crossing. Previous N-body simulations, however, showed that the final eccentricities of planets are around 0.1, which are about 10 times higher than the present eccentricities of Earth and Venus. The obtained high eccentricities are the remnant of orbital crossing. We included the effect of eccentricity damping caused by gravitational interaction with disk gas as a drag force (“gravitational drag”) and carried out N-body simulation of accretion of protoplanets. We start with 15 protoplanets with 0.2M⊕ and integrate the orbits for 107 years, which is consistent with the observationally inferred disk lifetime (in some runs, we start with 30 protoplanets with 0.1M⊕). In most runs, the damping time scale, which is equivalent to the strength of the drag force, is kept constant throughout each run in order to clarify the effects of the damping. We found that the planets' final mass, spatial distribution, and eccentricities depend on the damping time scale. If the damping time scale for a 0.2M⊕ mass planet at 1 AU is longer than 108 years, planets grow to Earth's size, but the final eccentricities are too high as in gas-free cases. If it is shorter than 106 years, the eccentricities of the protoplanets cannot be pumped up, resulting in not enough orbital crossing to make Earth-sized planets. Small planets with low eccentricities are formed with small orbital separation. On the other hand, if it is between 106 and 108 years, which may correspond to a mostly depleted disk (0.01-0.1% of surface density of the minimum mass model), some protoplanets can grow to about the size of Earth and Venus, and the eccentricities of such surviving planets can be diminished within the disk lifetime. Furthermore, in innermost and outermost regions in the same system, we often find planets with smaller size and larger eccentricities too, which could be analogous to Mars and Mercury. This is partly because the gravitational drag is less effective for smaller mass planets, and partly due to the “edge effect,” which means the innermost and outermost planets tend to remain without collision. We also carried out several runs with time-dependent drag force according to depletion of a gas disk. In these runs, we used exponential decay model with e-folding time of 3×106 years. The orbits of protoplanets are stablized by the eccentricity damping in the early time. When disk surface density decays to ?1% of the minimum mass disk model, the damping force is no longer strong enough to inhibit the increase of the eccentricity by distant perturbations among protoplanets so that the orbital crossing starts. In this disk decay model, a gas disk with 10−4-10−3 times the minimum mass model still remains after the orbital crossing and accretional events, which is enough to damp the eccentricities of the Earth-sized planets to the order of 0.01. Using these results, we discuss a possible scenario for the last stage of terrestrial planet formation.  相似文献   

3.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

4.
Most extrasolar planets discovered to date are more massive than Jupiter, in surprisingly small orbits (semimajor axes less than 3 AU). Many of these have significant orbital eccentricities. Such orbits may be the product of dynamical interactions in multiplanet systems. We examine outcomes of such evolution in systems of three Jupiter-mass planets around a solar-mass star by integration of their orbits in three dimensions. Such systems are unstable for a broad range of initial conditions, with mutual perturbations leading to crossing orbits and close encounters. The time scale for instability to develop depends on the initial orbital spacing; some configurations become chaotic after delays exceeding 108 y. The most common outcome of gravitational scattering by close encounters is hyperbolic ejection of one planet. Of the two survivors, one is moved closer to the star and the other is left in a distant orbit; for systems with equal-mass planets, there is no correlation between initial and final orbital positions. Both survivors may have significant eccentricities, and the mutual inclination of their orbits can be large. The inner survivor's semimajor axis is usually about half that of the innermost starting orbit. Gravitational scattering alone cannot produce the observed excess of “hot Jupiters” in close circular orbits. However, those scattered planets with large eccentricities and small periastron distances may become circularized if tidal dissipation is effective. Most stars with a massive planet in an eccentric orbit should have at least one additional planet of comparable mass in a more distant orbit.  相似文献   

5.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

6.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

7.
This numerical investigation is concerned with the stability of planets moving around one component of a double star system. Since the discovery of four extra solar planets moving in such orbits, there is a growing interest of stability studies thereto. We determined the stable regions in the elliptic restricted three body problem, for the whole range of mass-ratios from 0.1 to 0.9, by means of the Fast Lyapunov Indicators. The computations have been carried out for eccentricities of the binary and of the planet in the range 0–0.5. Therefore, we present for the first time the variation of the stable regions when the initial eccentricity of the planet is increased. We have found a correlation between the reduction of the stable zones if the eccentricity of the planet or of the binary is increased — of course the latter one is more effective.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
We report Doppler measurements of the stars HD 187085 and HD 20782 which indicate two high eccentricity low-mass companions to the stars. We find HD 187085 has a Jupiter-mass companion with a ∼1000-d orbit. Our formal 'best-fitting' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on rms and  χ2ν  ) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD 187085. Our data set for HD 20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD 20782 has   M sin   i = 1.77 ± 0.22  M Jup  , an orbital period of 595.86 ± 0.03 d and an orbit with an eccentricity of 0.92 ± 0.03. The detection of such high-eccentricity (and relatively low-velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high-eccentricity systems.  相似文献   

9.
We investigate the long-term dynamics of planetesimals in debris disks in models with the parameters of the binary star systems Kepler-16, Kepler-34, and Kepler-35 with planets. Our calculations show that the formation of a stable ring coorbital with the planet is possible for Kepler-16 and Kepler-35. In Kepler-34 significant orbital eccentricities of the binary system and the planet can prevent the formation of such a structure. The detection of circumbinary ring-like structures in observations of binary star systems can be evidence for the existence of planets retaining coorbital rings of dust and planetesimals.  相似文献   

10.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

11.
The Gliese 876 planetary system consists of two Jupiter-like planets having a nearly commensurate 2:1 orbital periods ratio. Because the semimajor axes of the planets are very small (of the order 0.1 au and 0.2 au, respectively), and the eccentricity of the inner companion is ≃0.3, the mutual perturbations are extremely large. However, many authors claim the long-term orbital stability of the system, at least over 500 Myr for initial conditions found by Rivera & Lissauer. Results of investigations of a migration of initially separated planets into the close 2:1 mean motion resonance lock from Lee & Peale also support the conclusion that the system should be stable for the lifetime of the parent star. Initial conditions of the system, found from non-linear N -body fits by Laughlin & Chambers and Rivera & Lissauer, to the radial velocity curve, formally allow for a variety of orbital configurations of the GJ 876 system, e.g. coplanar, with planetary inclinations in the range [≃30°, 90°], and with relative inclinations of orbital planes as high as 80°. Our work is devoted to the stability investigation of the systems originating from the fitted initial conditions. We study neighbourhoods of these initial states in the orbital parameter space. We found estimations of the 2:1 mean motion resonance width and dynamical limitations on the planetary masses. We also obtain a global representation of the domains of the orbital parameters space in which initial conditions leading to stable evolutions can be found. Our results can be useful in localization of the best, stable fits to the observational data. In our investigations we use the MEGNO technique (the Mean Exponential Growth factor of Nearby Orbits) invented by Cincotta & Simó. It allows us to distinguish efficiently and precisely between chaotic and regular behaviour of a planetary system.  相似文献   

12.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

13.
Irregular satellites—moons that occupy large orbits of significant eccentricity e and/or inclination I—circle each of the giant planets. The irregulars often extend close to the orbital stability limit, about 1/3-1/2 of the way to the edge of their planet's Hill sphere. The distant, elongated, and inclined orbits suggest capture, which presumably would give a random distribution of inclinations. Yet, no known irregulars have inclinations (relative to the ecliptic) between 47 and 141°.This paper shows that many high-I orbits are unstable due to secular solar perturbations. High-inclination orbits suffer appreciable periodic changes in eccentricity; large eccentricities can either drive particles with ∼70°<I<110° deep into the realm of the regular satellites (where collisions and scatterings are likely to remove them from planetocentric orbits on a timescale of 107-109 years) or expel them from the Hill sphere of the planet.By carrying out long-term (109 years) orbital integrations for a variety of hypothetical satellites, we demonstrate that solar and planetary perturbations, by causing particles to strike (or to escape) their planet, considerably broaden this zone of avoidance. It grows to at least 55°<I<130° for orbits whose pericenters freely oscillate from 0 to 360°, while particles whose pericenters are locked at ±90° (Kozai mechanism) can remain for longer times.We estimate that the stable phase space (over 10 Myr) for satellites trapped in the Kozai resonance contains ∼10% of all stable orbits, suggesting the possible existence of a family of undiscovered objects at higher inclinations than those currently known.  相似文献   

14.
Precision radial velocity measurements of the Sun-like dwarf 14 Herculis published by Naef et al., Butler et al. and Wittenmyer, Endl & Cochran reveal a Jovian planet in a 1760-d orbit and a trend indicating the second distant object. On the grounds of dynamical considerations, we test a hypothesis that the trend can be explained by the presence of an additional giant planet. We derive dynamical limits to the orbital parameters of the putative outer Jovian companion in an orbit within ∼13 au. In this case, the mutual interactions between the Jovian planets are important for the long-term stability of the system. The best self-consistent and stable Newtonian fit to an edge-on configuration of Jovian planets has the outer planet in 9-au orbit with a moderate eccentricity of ∼0.2 and confined to a zone spanned by the low-order mean motion resonances 5:1 and 6:1. This solution lies in a shallow minimum of (χ2ν)1/2 and persists over a wide range of the system inclination. Other stable configurations within 1σ confidence interval of the best fit are possible for the semimajor axis of the outer planet in the range of (6,13) au and the eccentricity in the range of (0, 0.3). The orbital inclination cannot yet be determined but when it decreases, both planetary masses approach ∼10 m J and for i ∼ 30° the hierarchy of the masses is reversed.  相似文献   

15.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

16.
The planets with a radius &lt; 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius &lt; 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

17.
18.
We use numerical simulations to model the migration of massive planets at small radii and compare the results with the known properties of 'hot Jupiters' (extrasolar planets with semimajor axes   a < 0.1  au). For planet masses   M pl sin  i > 0.5 M J  , the evidence for any 'pile-up' at small radii is weak (statistically insignificant), and although the mass function of hot Jupiters is deficient in high-mass planets as compared to a reference sample located further out, the small sample size precludes definitive conclusions. We suggest that these properties are consistent with disc migration followed by entry into a magnetospheric cavity close to the star. Entry into the cavity results in a slowing of migration, accompanied by a growth in orbital eccentricity. For planet masses in excess of 1 Jupiter mass we find eccentricity growth time-scales of a few ×105 yr, suggesting that these planets may often be rapidly destroyed. Eccentricity growth appears to be faster for more massive planets which may explain changes in the planetary mass function at small radii and may also predict a pile-up of lower mass planets, the sample of which is still incomplete.  相似文献   

19.
We have investigated the final accretion stage of terrestrial planets from Mars-mass protoplanets that formed through oligarchic growth in a disk comparable to the minimum mass solar nebula (MMSN), through N-body simulation including random torques exerted by disk turbulence due to Magneto-Rotational Instability. For the torques, we used the semi-analytical formula developed by Laughlin et al. [Laughlin, G., Steinacker, A., Adams, F.C., 2004. Astrophys. J. 608, 489-496]. The damping of orbital eccentricities (in all runs) and type-I migration (in some runs) due to the tidal interactions with disk gas is also included. Without any effect of disk gas, Earth-mass planets are formed in terrestrial planet regions in a disk comparable to MMSN but with too large orbital eccentricities to be consistent with the present eccentricities of Earth and Venus in our Solar System. With the eccentricity damping caused by the tidal interaction with a remnant gas disk, Earth-mass planets with eccentricities consistent with those of Earth and Venus are formed in a limited range of disk gas surface density (∼10−4 times MMSN). However, in this case, on average, too many (?6) planets remain in terrestrial planet regions, because the damping leads to isolation between the planets. We have carried out a series of N-body simulations including the random torques with different disk surface density and strength of turbulence. We found that the orbital eccentricities pumped up by the turbulent torques and associated random walks in semimajor axes tend to delay isolation of planets, resulting in more coagulation of planets. The eccentricities are still damped after planets become isolated. As a result, the number of final planets decreases with increase in strength of the turbulence, while Earth-mass planets with small eccentricities are still formed. In the case of relatively strong turbulence, the number of final planets are 4-5 at 0.5-2 AU, which is more consistent with Solar System, for relatively wide range of disk gas surface density (∼10−4-10−2 times MMSN).  相似文献   

20.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号