首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude–latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude–latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude–latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude–latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude–latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.  相似文献   

2.
In the framework of the space missions to Mercury, an accurate model of rotation is needed. Librations around the 3:2 spin-orbit resonance as well as latitudinal librations have to be predicted with the best possible accuracy. In this paper, we use a Hamiltonian analysis and numerical integrations to study the librations of Mercury, both in longitude and latitude. Due to the proximity of the period of the free libration in longitude to the orbital period of Jupiter, the 88-day and 11.86-year contributions dominate Mercury’s libration in longitude (with the Hermean parameters chosen). The amplitude of the libration in latitude is much smaller (under 1 arcsec) and should not be detected by the space missions. Nevertheless, we point out that this amplitude could be much larger (up to several tens of arcsec) if the free period related to the libration in latitude approaches the period of the Jupiter-Saturn Great Inequality (883 years). Given the large uncertainties on the planetary parameters, this new resonant forcing on Mercury’s libration in latitude should be borne in mind.  相似文献   

3.
X-ray images of the solar corona, taken on November 24, 1970, showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale height within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole.Since there have been several predictions that such a region should be the source of a high velocity stream in the solar wind, wind measurements for the appropriate period were traced back to the Sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.Solar wind bulk velocity and photospheric magnetic field data from the period 1962–1970 indicate the possible extension of the result to the interpretation of long term variations in the wind pattern.  相似文献   

4.
J. Dürst 《Solar physics》1976,50(2):457-464
Polarigraphic observations of the 7 March, 1970 eclipse were made at Miahuatlán (Mexico) with a camera of 120 cm focal length. A polarizing filter in front of the objective could be adjusted at 8 different positions, 22.5° apart. Reduction of eight photographs of the white light corona yields polarization at 72 position angles and from r = 1.1 up to 2.1. High polarization which cannot be explained with Thomson scattering was not observed. An analysation of the measuring accuracy shows, that it is not possible to determine exactly the direction of polarization in the outer corona with the classical method of measuring polarization with a small number of photographs. The coronal hole in the south-west quadrant is analysed. The low intensity and polarization can be explained by a hole with an extent in longitude between 1 and 2 times its extent in latitude and with a minimum electron density between 0 and 0.3 of that outside the hole.Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, No. 347.  相似文献   

5.
The apparent height of radio sources above the photosphere was determined for the period of 1968–1971, by a method which makes use of the displacement in latitude of the centroid of the radio emission relative to the associated optical feature.The apparent height fell progressively in time by amounts that would not have been noticeable in earlier observations. Furthermore, in any given year the height was found to depend on latitude, being larger at low latitudes.It remains to be seen to what extent these variations represent real changes in height and to what extent they are apparent. In either case, modification of solar atmospheric models will be required to account for these previously unreported phenomena.  相似文献   

6.
Photographic observations of Jupiter and its Red Spot between 13 November 1969 and 21 September 1970 are reported. The Red Spot continues its 90-day oscillation in longitude with considerable regularity. An outstanding event of the apparition was the appearance of a new disturbance in the South Tropical Zone. A bright spot at zenographic latitude 23°.8 N displayed the shortest rotation period ever recorded on Jupiter, 9h47m3s.  相似文献   

7.
The distribution of neutral and ionized particles about a planet depends, at any time, on angular coordinates (latitude and longitude) as well as altitude. Measurements of the Venusian and Martian atmospheres and ionospheres have been made by means of the ‘occultation’ experiment on-board the Mariner spacecrafts, and the same or similar experiment is planned for future missions to the planets. The conventional method of reducing the residual doppler data assumes spherical symmetry, in which the refractivity of the medium depends only on radius from the center of the planet, or altitude. It is shown that the neglect of angular dependence may introduce serious errors, even for media in which this dependence is slight compared to that in the radial direction, when the plane of motion of the spacecraft about the planet is inclined with respect to the direction of the Earth. The magnitude of the errors may be greatest for a planet such as Mercury and least for Jupiter, if planetary size and atmospheric temperature are the principal factors considered. Mars and Venus being intermediate. These results are most significant for an orbiter in which the orbital plane is inclined to obtain planetary coverage in a matter of months of measurements. Results of calculations for a particular model show that scale height measurements, and, thereby, atmospheric temperature, may be in error by a factor greater than 2 for inclined orbital configurations.  相似文献   

8.
The heliocentric orbits of the two STEREO satellites are similar in radius and ecliptic latitude, with separation in longitude increasing by about 45° per year. This arrangement provides a unique opportunity to study the evolution of stream interfaces near 1 AU over time scales of hours to a few days, much less than the period of a Carrington rotation. Assuming nonevolving solar wind sources that corotate with the Sun, we calculated the expected time and longitude of arrival of stream interfaces at the Ahead observatory based on the in situ solar wind speeds measured at the Behind observatory. We find agreement to within 5° between the expected and actual arrival longitude until the spacecraft are separated by more than 20° in heliocentric inertial longitude. This corresponds to about one day between the measurement times. Much larger deviations, up to 25° in longitude, are observed after 20° separation. Some of the deviations can be explained by a latitude difference between the spacecraft, but other deviations most likely result from evolution of the source region. Both remote and in situ measurements show that changes at the source boundary can occur on a time scale much shorter than one solar rotation. In 32 of 41 cases, the interface was observed earlier than expected at STEREO/Ahead.  相似文献   

9.
The problem of how to determine parameters of motion for an automated interplanetary probe (AIP) on a quasi-satellite orbit during flight to the small natural satellite of a planet is examined. The problem is solved by searching for an optimal state-space trajectory of automated interplanetary probe according to the least-squares criterion. The results of longitude and latitude measurements at several points are used as boundary conditions.  相似文献   

10.
Variations in diurnal tidal stress due to Europa’s eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2°, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1° of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.  相似文献   

11.
Estimation of solar illumination on the Moon: A theoretical model   总被引:2,自引:0,他引:2  
The solar illumination conditions on the lunar surface represent a key resource with respect to returning to the Moon. As a supplement to mapping the solar illumination by exploring data, lighting simulations using high-resolution topography could produce quantitative illumination maps. In this study, a theoretical model is proposed for estimating the solar illumination conditions. It depends only on the solar altitude and topographical factors. Besides the selenographic longitude and latitude, the former is determined by the selenographic longitude and latitude at the subsolar site, the geocentric ecliptical latitude, and the dimensionless distance of the Sun–Moon relative to 1 AU, which are function of time. The latter is determined by comparing the elevations in solar irradiance direction within 210 km in which the topography might shadow the behind sites to the critical elevations determining whether the behind sites are shadowed or not. Compared to Zuber's model, the model proposed in this study is simpler and easier for computing. It is parameterized with selenographic coordinates, elevations, and time. With high-resolution topography data, the solar illumination conditions at any selenographic coordination could be estimated by this model at any date and time. The lunar surface is illuminated when the solar altitude is non-zero and all the elevations within 210 km in solar irradiance direction are lower than the critical elevations. Otherwise it would be shadowed.  相似文献   

12.
13.
We compute the perturbations on the motion of the Moon due to its shape. The accuracy is estimated at 1.10–5 in longitude and latitude and 5 parts in 1011 in distance.  相似文献   

14.
In the declining phase of solar cycle 20 (1970–74) three pulses of activity occurred and resulted in two well defined ‘stillstands’ in the smoothed means of sunspot, 2800 MHz, and calcium plage data. Marked diminutions in spot and 2800 MHz flux took place in 1970 and 1971, respectively, and were accompanied by concomitant decreases in flare-occurrence. Studies of the latitude distribution of spots and flares show the extent of the dominance of the northern hemisphere in cycle 20 and the marked phase shift between northern and southern hemispheres. In the years studied, the longitudes of centers of activity clustered in identifiable zones or hemispheres for relatively long intervals of time. From mid-1973 to mid-1974 the Sun had a relatively inactive hemisphere centered on ~0° longitude. The relationship of certain well defined ‘coronal holes’ to this inactive hemisphere of the chromosphere is noted. The first two spot groups of the new cycle formed in November 1974 and January 1975 in the longitude zone associated with relatively high levels of old cycle activity, a repetition of the pattern observed in 1963–64.  相似文献   

15.
High-resolution radar observations of Mars at a wavelength of 3.8 cm have been carried out at the Haystack Observatory for a period of about 6 months surrounding the 1971 opposition. The relative surface height variation with longitude over a band of Martian latitudes between about ?14° and ?22° has been derived from these observations with an error of about 75m in the most favorable cases. At ?14° latitude, the dielectric constant was found to increase steadily from about 1.7 at 70°W to about 5.0 at 110°W. Over the same interval the rms surface slopes vary from 2° to 1°. The mean equatorial radius of Mars as determined from the combined radar data of 1967, 1969 and 1971 was found to be 3394 ± 2km.  相似文献   

16.
In 1971 asteroid Vesta was observed in a region of the sky in which it had never been observed before. Its photometric lightcurve had two distinct maxima. Those observations have been the only strong evidence to support a rotation period of about 10 hr 41 min. Lightcurves made in 1982, when Vesta was at the same aspect as 1971, do not show two different maxima. It is concluded that there was a systematic error in the 1971 observations. At this time a definitive statement cannot be made about the true period of Vesta, although the 5 hr 20 min period does appear more plausible. Radar echoes in 1988 and 1992 should resolve the problem. The shorter rotation period was assumed and the photometric astrometry method applied. The sidereal period is 5 hr 20 min 31.68 sec 0.2225889 ± 0.0000002 days, the rotation is prograde, and the coordinates of the north pole are 103° longitude and +43° latitude with an uncertainty of abour 6°.  相似文献   

17.
D.A. Rothery  M. Massironi 《Icarus》2010,209(1):256-261
Thanks to its location at low latitude and close to the terminator in the outbound view of Mercury obtained during MESSENGER’s first fly-by, the Beagle Rupes lobate scarp on Mercury has been particularly clearly imaged. This enables us to interpret it as a component of a linked fault system, consisting of a frontal scarp terminated by transpressive lateral ramps. The terrain bounded by these surface manifestations of faulting is the hanging-wall block of a thrust sheet and must be underlain by a basal decollement (a detachment horizon) constituting the fault zone at depth. The decollement must extend a minimum of 150 km eastwards from the frontal scarp, and at least 400 km if displacement is transferred to features interpreted as out-of-sequence thrusts and offset lateral ramps that appear to continue the linked fault system to the east. The depth of the basal decollement could be controlled by crustal stratigraphy or by rheological change within, or at the base of, the lithosphere. Previous interpretations of mercurian lobate scarps regard their thrusts as uniformly dipping and dying out at depth, lacking lateral ramps and any extensive detachment horizon. Anticipated improvements in image resolution and lighting geometry should make it possible to document what percentage of lobate scarps share the Beagle Rupes style of tectonics.  相似文献   

18.
The zonal mean ammonia abundance on Jupiter between the 400- and 500-mbar pressure levels is inferred as a function of latitude from Cassini Composite Infrared Spectrometer data. Near the Great Red Spot, the ammonia abundance is mapped as a function of latitude and longitude. The Equatorial Zone is rich in ammonia, with a relative humidity near unity. The North and South Equatorial Belts are depleted relative to the Equatorial Zone by an order of magnitude. The Great Red Spot shows a local maximum in the ammonia abundance. Ammonia abundance is highly correlated with temperature perturbations at the same altitude. Under the assumption that anomalies in ammonia and temperature are both perturbed from equilibrium by vertical motion, we find that the adjustment time constant for ammonia equilibration is about one third of the radiative time constant.  相似文献   

19.
The work studies the Chandler component of polar motion, obtained from variations in the Pulkovo latitude over 170 years (1840–2009). To extend the time series of variations in the Pulkovo latitude back into the past until 1840, we used the first Pulkov observations on the basis of the Reynolds transit instrument in the prime vertical and on the basis of large vertical Ertel circle. We employed different methods of analysis of nonstationary time series, such as wavelet analysis, methods of bandpass filtering, singular spectral analysis, and Fourier and Hilbert transforms. Changes in the Pulkovo latitude from 1904–2006, as inferred from ZTF-135 observations and as calculated from international data, were compared. It was shown that time changes in the amplitude and phase of Chandler polar motion can be studied based on long-term observation time series of latitude at a single observatory, even if these observation records have gaps. We were the first to study the changes in the Chandler wobble for that long time series of variations in the Pulkovo latitude with the help of different methods. The long observation record and the methods of analysis of nonstationary time series had allowed us to identify two similar structures, both well apparent during the periods of 1845–1925 and 1925–2005 in the time variations of phase and amplitude. The presence of this structure indicates that low-frequency regularities may be present in the Chandler polar motion, and one of the manifestations of this may be the well known feature in the region of 1925. The superimposed epoch method was used to estimate the period of variations in the amplitude with a simultaneous change of phase of this oscillation, which was found to be 80 years. In addition, advantages of singular spectral analysis for studying the long-period time series with involved structure are demonstrated.  相似文献   

20.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号