首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a new static, non-singular, spherically symmetric fluid model has been obtained in the background of f(R,T) gravity. Here we consider the isotropic metric potentials of Durgapal-IV (Durgapal, 1982) solution as input to handle the Einstein field equations in f(R,T) environment. For different coupling parameter values of χ, graphical representations of the physical parameters have been demonstrated to describe the analytical results more clearly. It should be highlighted that the results of General Relativity (GR) are given by χ=0. With the use of both analytical discussion and graphical illustrations, a thorough comparison of our results with the GR outcomes is also covered. The numerical values of the various physical attributes have been given for various coupling parameter χ values in order to discuss the impact of this parameter. Here we apply our solution by considering the compact star candidate LMC X-4 (Rawls et al., 2011) with mass =(1.04±0.09)M and radius =8.3010.2+0.2 km. respectively, to analyze both analytically and graphically. To confirm the physical acceptance of our model, we discuss certain physical properties of our obtained solution such as energy conditions, causality, hydrostatic equilibrium through a modified Tolman–Oppenheimer–Volkoff (TOV) conservation equation, pressure–density ratio, etc. Also, our solution is well-behaved and free from any singularity at the center. From our present study, it is observed that all of our obtained results fall within the physically admissible regime, indicating the viability of our model.  相似文献   

2.
The detection of exoplanets in the past three decades has revealed the fact that planets are ubiquitous in the universe. In order to deeply study the ubiquity of habitable planets, on one hand, we need to understand the characteristics of habitable planets; on the other hand, we can analyze the the distribution characteristics of exoplanets have been found, and to calculate the probability of occurrence of such planets around stars. Among the exoplanets that have been found so far, most of them are discovered by the transit method. For example, the number of the planets detected by the Kepler space telescope is 2344. Kepler telescope officially retired in 2018, and the Kepler team released the final version of Kepler Data Release (DR25), including a total of 198709 stars observed quarterly Q1–Q17. Here we analyze the Kepler data by using two different methods, Inverse Detection Efficiency Method (IDEM) and Maximum Likelihood Analysis (ML), to estimate planet occurrence rates in the space of the parameters of radius and orbital period. At the same time, the samples were classified according to the spectral types of stars, and the planet occurrence rates around F, G, and K Kepler stars as well as its overall formation rate were estimated respectively. We estimate the planetary occurrence rates for planets among radius range of 1–20 R (R is one radius of the Earth) and orbital period range of 0.4–400 days by IDEM and ML, for which around F stars are respectively 0.36±0.02 and 0.47±0.02. The rates around G stars by IDEM and ML are respectively 1.62±0.05 and 1.23±0.04. The rates around K stars by IDEM and ML are respectively 2.61±0.12 and 2.73±0.13. And the overall occurrence rate of such planets around F, G, K stars by IDEM and ML are respectively 1.16±0.03 and 0.90±0.02. According to our estimation, we further show the results for the planet occurrence rates around stars with different spectral types by different methods, and discuss the reliability of the results in comparison with the previous studies.  相似文献   

3.
4.
5.
Detailed photometric analysis of V523 And and V543 And from the Wide Angle Search for Planets survey is presented for the first time. It was found that while V523 And is a detached binary, V543 And is a semi-detached binary star system. The adopted masses and radii for the primary and secondary components are M1=0.77±0.08 M, R1=0.87±0.08 R and M2=0.50±0.12 M, R2=0.77±0.17 R for V523 And; and M1=1.59±0.16 M, R1=1.46±0.09 R and M2=0.58±0.17 M, R2=1.66±0.22 R for V543 And. Orbital period variations of the systems were analyzed using the O-C method. The O-C change of V523 And is discussed in terms of the magnetic activity cycle of one or both components and light travel time effect (LTTE) due to a third body in the system. Among these mechanisms, LTTE seems to be the most appropriate mechanism to explain the O-C variation of the system since the quadrupole moments of the primary and secondary components (ΔQ) were found to be in the order of 1049 g cm2. The O-C diagram of V543 And shows a downward parabolic trend, which suggests a secular period decrease with a rate of 0.080±0.012 s/year. The parabolic O-C variation of V543 And was interpreted in terms of the non-conservative mass transfer mechanism. According to this scenario, the range of possible values of the mass gain rate (Ṁ1) of the primary component of V543 And as well as the mass-loss rate (Ṁ) of the system were found to be 1051011 M/year and 106108 M/year, respectively.  相似文献   

6.
7.
8.
9.
10.
11.
CCD photometry of the eclipsing binary system V1036 Her was performed using Johnson V filter in Dr. Mojtahedi Observatory of the University of Birjand during July-August 2017 and July 2018. Moreover, the spectroscopy of the system was carried out by TRES during April 2018. A mass ratio of 3.07(27)is obtained and an initial effective temperature of 5500 was suggested. For the first time, the relative and absolute parameters of the system are determined by analyzing the light curve and radial velocity data. The results indicate that V1036 Her is a W-subtype W UMa system with a degree of overcontact of 22%. The analysis of the period change shows that the period of the system changes with the rate of P˙=2.23(4)×107day/year. With the assumption of the system mass conservation, a mass transfer rate from the primary to the secondary component of m˙1=1.00(3)×107M/year is probable. Additionally, a periodic behavior with a period of about 10 years is observed in the O-C curve, which predicts the possibility of a third body with a minimum mass of 0.14(1)M.  相似文献   

12.
13.
14.
15.
The present study deals with a Tsallis holographic dark energy model in a flat Friedmann-Lamatire-Rbertson-Walker space-time geometry in the context of higher derivative theory of gravity. We have solved the field equations by applying energy conservation-law in non-interacting case and have obtained such a scale factor a(τ)=[sinh(2a1τ)]12 where a1 is called as model parameter which shows transit phase evolution of the universe (decelerating to accelerating). Using this scale factor we have obtained the various cosmological parameters viz. Hubble parameter H, deceleration parameter (DP) q, jerk j, snap s, lerk l and max-out m. Constraining on Hubble parameters H(z) by the observational data of H(z) we have obtained the present values of H0, a0 and a1 and by using these constrained values, we have studied other cosmological parameters. Taking the constant equation of state (EoS) ωm for ordinary matter, we have investigated the effective behaviour of various cosmological parameters and energy conditions in our model. We have observed the present values of {t0,H0,q0,j0,s0,l0,m0,ωde0,ω0(eff)} and discussed with ΛCDM model. We have found the age of the present universe t0=13.05 Gyrs, present value of DP q0=0.8065 and transition point zt=0.748 which are compatible with several observational results.  相似文献   

16.
17.
18.
19.
20.
A dozen of new precise times of eclipses were measured for the eclipsing binary DX Cygni as a part of our long-term observational project for studying neglected eclipsing binaries with a short orbital period. Based on a current OC diagram, we found for the first time that its period is increasing (dP/P=1.68×107 day/years) and that times of minima show also significant cyclical changes with a period of about 16 years, caused very probably by a third body orbiting the eclipsing pair. The minimal mass of this companion is 0.49 M. The light curve solution in Phoebe results to the typical Algol-type semidetached configuration where the secondary fills its Roche lobe. The temperature of primary component was fixed to T1=5300 K according to its spectral type, which gives us T2=3330±20 K for the secondary. The photometric mass ratio was estimated q=0.504±0.012. We also compare orbital parameters of selected known Algol-type eclipsing binaries with proven mass transfer and a third body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号