首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).  相似文献   

2.
A continuous, 1,420-cm sediment record from Lake Pupuke, Auckland, New Zealand (37°S) was analysed for diatom taxonomy, concentration and flux. A New Zealand freshwater diatom transfer function was applied to infer past pH, electrical conductivity, dissolved reactive phosphorus and chlorophyll a. A precise, mixed-effect regression model of age versus depth was constructed from 11 tephra and 13 radiocarbon dates, with a basal age of 48.2?cal kyr BP. Diatom-inferred changes in paleolimnology and climate corroborate earlier inferences from geochemical analyses (Stephens et al. 2012), with respect to the timing of marked climate changes in the Last Glacial Coldest Phase (LGCP; 28.8?C18.0?cal kyr BP), the Last Glacial Interglacial Transition (LGIT; 18.0 to ca. 12?C10?cal kyr BP) and the Holocene, the onset of which is difficult to discern from LGIT amelioration, but which includes an early climatic optimum (10.2?C8.0?cal kyr BP). The LGCP is readily defined by a reduction in lake level and effective precipitation, whereas the LGIT represents a period of rising lake level, with greater biomass during the Holocene. There was limited change in diatom assemblage structure, influx or inferred water quality during a Late Glacial Reversal (LGR; 14.5?C13.8?cal kyr BP), associated with heightened erosional influx. In contrast, an LGIT peak in paleoproductivity is recorded by increased diatom influx from 13.8 to 12.8?cal kyr BP. Changes in sediment influx and biomass record complex millennial-scale events attuned to the Antarctic Cold Reversal (ACR; 14.5?C12.8?cal kyr BP). Additional millennial-scale environmental change is apparent in the Holocene, with marked changes in lake circulation beginning at 7.6?cal kyr BP, including the onset of seasonal thermal stratification and rapid species turnover at 5.7?cal kyr BP. The most rapid diatom community turnover accompanied widely varying nutrient availability and greater seasonality during the last 3.3?cal kyr. Rising seasonality appears to have been linked to strengthened Southern Westerlies at their northern margins during the middle and late Holocene.  相似文献   

3.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

4.
5.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

6.
We present a diatom record from a sediment core taken in Lake Fryxell, Taylor Valley, Antarctica. Six zones were defined using diatom assemblage changes that indicate varying limnological conditions. The early lake stage, ca. 35,000 cal years BP, is characterized by Mayamea atomus f. permitis, a species rarely reported in modern Antarctic Dry Valley environments. An extended period from ca. 35,000 to 19,000 cal years BP is characterized by low diatom abundance, with dominant taxa Luticola spp., Muelleria spp., and Diadesmis contenta. The modern assemblage was established ca. 13,000 cal years BP, after two relatively brief transitional stages. One key species for this recent period, Navicula lineola var. perlepida, is absent in surface sediments and the modern environment, indicating an environmental change within the last several centuries. The diatom assemblage is compared to modern diatom communities in Dry Valley streams, which provide the most complete information on diatom distributions in this region. Although precise environmental interpretation of the core is hampered by limited knowledge of environmental constraints on many of the diatom taxa present in the lake core, the data provide important new insights into the history of Glacial Lake Washburn.  相似文献   

7.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   

8.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

9.
Two sediment cores from the Archipelago Sea in the northern Baltic Sea were examined for their siliceous microfossils in order to study the Holocene palaeoenvironmental history of the area. The diatom record was divided into local diatom assemblage zones (LDAZ). An age model was constructed using independent palaeomagnetic and AMS-14C methods. The early history of the Archipelago Sea was freshwater. Initial brackish-water influence is observed at 7,950 ± 80 cal. BP (LDAZ4), but fully brackish conditions were established at 7,700 ± 80 cal. BP (LDAZ5). Diatom assemblages indicate increasing salinity, warming climate, and possible increasing trophic state during the transition from lacustrine to brackish-water conditions. The decreasing abundance of Pseudosolenia calcar-avis (Schultze) Sundström and the increasing abundance of the ice-cover indicator species Pauliella taeniata (Grunow) Round and Basson indicate reduced salinity and climatic cooling after ~5,000 cal. BP. LDAZ boundaries do not always correlate with changes in the sediment appearance, which underlines the importance of defining biostratigraphic boundaries independently to the sediment visual character, in contrast with the conventional practice for classifying the Baltic Sea sediments.  相似文献   

10.
A combination of carbon-to-nitrogen ratios (TOC/TN), Rock Eval-analyses, and stable isotope values of bulk nitrogen (δ15N) and organic carbon (δ13Corg) was used to characterize bulk organic matter (OM) of a piston core from the Patagonian maar lake Laguna Potrok Aike (Argentina) for the purpose of palaeoenvironmental reconstruction. Sedimentary data were compared with geochemical signatures of potential OM sources from Laguna Potrok Aike and its catchment area to identify the sources of sedimentary OM. Correlation patterns between isotopic data and TOC/TN ratios allowed differentiation of five distinct phases with different OM composition. Before 8470 calibrated 14C years before present (cal. yrs BP) and after 7400 cal. yrs BP, isotopic and organo-geochemical fingerprints indicate that the sediments of Laguna Potrok Aike consist predominantly of soil and diatom OM with varying admixtures of cyanobacterial and aquatic macrophyte OM. For a short phase of the early Holocene (ca. 8470–7400 cal. yrs BP), however, extremely high input of soil OM is implied by isotopic fingerprints. Previous seismic and geochronological results indicate a severe lake-level drop of 33 m below present-day shortly before 6590 cal. yrs BP. It is suggested that this lake level drop was accompanied by increased erosion of shore banks and channel incision enhancing soil OM deposition in the lake basin. Thus, isotopic data can be linked to hydrological variations at Laguna Potrok Aike and allow a more precise dating of this extremely low lake level. An isotopic mixing model was used including four different sources (soil, cyanobacteria, diatom and aquatic macrophyte OM) to model OM variations and the model results were compared with quantitative microfossil data.  相似文献   

11.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

12.
The study was undertaken as part of a wider palaeoecological investigation of Late glacial and Holocene lake sediments from a site on the exposed Atlantic coast of the Shetland Islands. The diatom data presented here define a sequence of assemblages, commencing at c. 15.8 cal ka BP, which reflects lithological variation in the section, in particular the Late glacial alternation of minerogenic and more organic horizons. Cliff retreat caused drainage of the lake sometime after c. 4.0 cal ka BP. Almost all taxa recorded are small benthic and tychoplanktonic diatoms: Fragilaria (sensu lato), Achnanthes (s.l.) and some Navicula spp. predominate in the Late glacial. Different benthos become dominant in the Holocene, but no plankton developed. Stauroforma was the commonest genus present, and results indicate a relationship between the occurrence of two types, Stauroforma A and Stauroforma B, and the severity of prevailing environmental conditions. The lithology and associated assemblages suggest a sequence including the classic north European Bølling and Allerød' warmer periods, followed by the Loch Lomond Stadial. Subsequently, the temporal diatom succession resembles the pattern described in modern linear transects across the circumpolar treeline in north America and Asia, both in type of assemblage and some dominant species.  相似文献   

13.
Diatom-based inferences of post-glacial hydrological change from a sedimentary record from Felker Lake, British Columbia, show millennial-scale pacing of climate over the past approximately 11670 calendar years with change at ca. 8140 cal. year BP, ca. 6840 cal. year BP, ca. 5700 cal. year BP, and ca. 2230 cal. year BP. Early postglacial diatom assemblages are dominated by fragilaroid taxa, suggesting that cool and moist climate conditions and relatively high lake levels prevailed at this time. Early Holocene warming near ca. 8140 cal. year BP promoted Cyclotella bodanica var. lemanica, a fall bloomer competitive in limnological conditions associated with warmer water and stratified conditions. Short-lived peaks of Stephanodiscus parvus/minutulus between ca. 6340 cal. year BP and ca. 5860 cal. year BP indicate periodic increases in nutrient availability and prolonged mixing likely associated with long cool and moist spring seasons. The diatom-inferred depth of Felker Lake increased during the mid-Holocene to reach a record high-stand at ca. 5860 cal. year BP. Large changes in hydrological variability and terrestrial vegetation at Felker Lake occurred after ca. 2230 cal. year BP when high-amplitude centennial-scale fluctuations in diatom-inferred lake depth and salinity are observed. Change is first documented in terrestrial vegetation at this time by a shift from open Pinus parklands to a landscape that periodically supported populations of Cupressaceae. Three record low-stand high-salinity events are reconstructed between ca. 1910 cal. year BP and ca. 1800 cal. year BP, ca. 1030 cal. year BP and ca. 690 cal. year BP, and ca. 250 cal. year BP and ca. 140 cal. year BP. The low lake-level episode of ca. 1030 cal. year BP–ca. 690 cal. year BP is coeval with the Medieval Warm Period (ca. 1000 cal. year BP–ca. 600 cal. year BP), a period of intense drought in western North America. Post-glacial hydrological change at Felker Lake is coherent with regional, hemispherical, and global paleoclimate events, suggesting that millennial-and centennial-scale shifts in water availability are a persistent feature of the climate of western North America.  相似文献   

14.
A fossil diatom record covering the past 3000 cal. years BP wasanalyzed from a small lake in northwestern Québec near the northernlimit of present-day tree-line. Fragilaria virescens var.exigua Grunow in Van Heurck was the dominant speciesthroughout the core with abundances ranging between 13–35% of thetotal valve count. There was a replacement of alkaliphilous taxa byacidophilous taxa beginning ca. 1300 cal. yr ago, probably reflectinglong-term, natural acidification processes. A diatom-based transfer functionwas used to provide quantitative estimates of variations in lakewater dissolvedorganic carbon (DOC). These inferred values showed that DOC concentrations haveremained stable over the past 3000 years (mean ± S.D. = 5 ± 0.43 mg C l–1), suggesting relatively constant allochthonouscarbon inputs and underwater light conditions during the late Holocene. Thereconstructed DOC data were compared to the palynological record from the samelake. Our study indicates that, in contrast to paleolimnological records fromlakes in central and western Canada, climatic variations and associatedvegetational shifts have been too subtle to cause pronounced variations in DOCin this northern Québec site.  相似文献   

15.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

16.
Formation of Lake Long, King George Island, Antarctica started about 4,000 years B.P., after which the diatom community changed in response to environmental shifts driven by climatic oscillations (warm/wet and cool/dry). Successive sequences of diatoms in a 7.5-m drill core were divided into 11 assemblage zones by cluster analysis. The most obvious change was an alternation of major dominants, Achnanthes minutissima, Fragilaria alpestris and Fragilaria pinnata v. antarctica according to the climatic oscillations in the late Holocene. Variations in diatom assemblages clearly reflect two warm periods, a single cool period, and three transition periods. The recent warm period (zones 2 and 1) has persisted for approximately 450 years, perhaps sufficiently long to suggest the imminent onset of a new transition period. A recent high TOC (total organic carbon) value in the core reflects a warm period in Antarctica during the late Holocene.  相似文献   

17.
Diatom abundances in the surface sediment samples of 41 mountain lakes in the central Austrian Alps (Niedere Tauern) were related to environmental variables using multi-variate techniques. Canonical correspondence analysis (CCA) revealed that the pH, date of autumn mixing (A mix), mean August water temperature (T Aug), dissolved organic carbon (DOC), and relative water depth (Z rel) made significant contributions to explain the diatom assemblage variation in the lakes of the training set. A weighted averaging partial least square regression and calibration model was used to establish Di-pH (R 2 boot= 0.72, RMSEPboot= 0.131), and a thermistor measurements-based PLS model for A mix (R 2 boot= 0.71, RMSEPboot= 0.006 log10 Julian days). The latter showed a better prediction than T Aug, and was used in terms of climate change. These transfer functions, together with analyses of loss on ignition (LOI), the total carbon/nitrogen (C/N)-ratios, and selected pollen, were applied to an early to mid-Holocene (11.5–4 cal. ky BP) sediment core section from an Austrian Alpine treeline lake on crystalline bedrock. Additionally, passive sample scores in the CCA of the diatom training set were used to show trends in the variables DOC and Z rel. During the early Holocene, diatoms indicative of increased pH, extended warm summers, and low water levels dominated. Between 10.2 and 7.6 cal. ky BP it was followed by diatom assemblages that indicated an increase in lake water depth and an earlier A mix. The multi-proxy data suggest that the A mix decline is the result of a series of snow-rich summer cool and wet climate fluctuations, which were divided by climate warming at ∼9 cal. ky BP. Increased A mix, LOI and DOC, and the correspondent decline in the C/N-ratios, show subsequent climate warming between 7.3 and 6 cal. ky BP. The long-term trend in Di-pH indicates the impact of catchment-related processes during the early-Holocene, that were superimposed by climate.  相似文献   

18.
This study presents detailed lithostratigraphy and stable carbon and nitrogen isotopic variations in a 520-cm-long sediment core from a cirque basin in the Labsky důl Valley, Krkonoše Mountains, Czech Republic. Detailed study of the core reveals five major periods of sedimentation during the last 7600 years: silt and sand deposition during ~7.6–5.1 ka cal BP, Sphagnum peat accumulation during ~5.1–4.0 ka cal BP, sandy silt and sand during ~4.0–2.8 ka cal BP, raised peat bog during ~2.8–2.0 ka cal BP (Sphagnum peat), and sedimentation of sandy silt since ~2.0 ka cal BP. The δ13C values of the organic matter in the core vary in the range typical for C3 plants, from −24.35 to −27.68‰, whereas the δ15N values vary from −2.65 to +4.35‰. Core sections having ash contents ≥70% have δ15N > 1‰ and δ13C < −26‰, whereas those having ≤70% ash content have δ15N < 1‰ and δ13C > −26‰. Strong linear correlations are observed between δ13C and δ15N values as well as between C:N ratios and δ15N values in the horizons with ash content >10%, primarily for sand and silt horizons. On the other hand, poor correlations between δ13C and C:N ratio, as well as δ15N and C:N ratio, were observed in Sphagnum peat layers (45–125 and 185–265 cm). We conclude that the primary stable isotope variations are not preserved in the layers where significant correlation between δ15N and C:N ratio is observed. The relatively small δ13C variation in the uppermost Sphagnum peat layer suggests stable temperature during ~2.8–2.0 ka cal BP.  相似文献   

19.
A 5.52 m long sediment sequence was recovered from Lake Terrasovoje, Amery Oasis, East Antarctica, in order to reconstruct the regional environmental history. The basal sediments, which are dominated by glacial and glaciofluvial clastic sediments, attest to a Late Pleistocene deglaciation of the lake basin. These sediments are overlain by 2.70 m of laminated algal and microbial mats and a few interspersed moss layers. Radiocarbon dating, conducted on bulk organic carbon of 12 samples throughout the organic sequence, provides a reliable chronology since the onset of biogenic accumulation at c. 12,400 cal. year BP. Successful diatom colonization, however, was probably hampered by extensive ice and snow cover on the lake and restricted input of nutrients until 10,200 cal. year BP. A subsequent increase of nutrient supply culminated between 8600 and 8200 cal. year BP and is related to warm summer temperatures and reduced albedo in the catchment. Warm conditions lasted until 6700 cal. year BP, supporting the establishment of a diatom community. Colder temperatures from 6700 cal. year BP culminated in several periods between 6200 and 3700 cal. year BP, when high amounts of sulphur and low abundances of diatoms were deposited due to a perennial ice and snow cover on the lake. During the late Holocene, relatively warm conditions between 3200 and 2300 cal. year BP and between 1500 to 1000 cal. year BP, respectively, indicated by high accumulation of organic matter and reducing bottom water conditions, were interrupted and followed by colder periods.  相似文献   

20.
A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000?cal?year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400?cal?year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870?cal?year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1?°C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号