首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of seismic studies on the Friuli May 6, 1976 earthquake based on historical and seismological data collected by the OGS are presented. The epicenter and hypocenter distributions reconstructed from the Friuli networks and from Trieste WWSS Station are examined. The earthquakes of Latisana (1975–1976) are interpreted as the foreshocks of the main shock of May 6. Parameters of larger shocks are calculated. At the end a correlation between the hypocenters and the involved geodynamic structure of the region is proposed.  相似文献   

2.
2013年8月28日、31日, 云南迪庆藏族自治州香格里拉县、德钦县、四川省甘孜藏族自治州得荣县交界地区连续发生5.1级、5.9级地震.为了查明此次地震的影响破坏程度, 进行了地震现场建筑物震害考察并对震中附近断裂进行了野外构造地质剖面调查.两次地震在短时间内并在相近位置连续发生, 造成了此次云南香格里拉、德钦-四川得荣交界地震比以往同级地震的破坏程度要高, 地震烈度最高为Ⅷ级, 有感范围大, 5.9级地震宏观震中大致处在整个灾区破坏最严重的奔子栏镇争古村一带(28.20°N, 99.36°E), 距离地震微观震中约5.1km.等震线沿德钦-中甸断裂呈北西向分布, 近似为椭球状, 结合此次地震震中附近区域现场断裂调查、震源机制解数据以及地震余震空间分布特征, 初步推断此次地震的发震构造为德钦-中甸断层, 其主要表现为一次以正断为主兼有左旋走滑错动的地震事件.   相似文献   

3.
于晓 《山东地质》2010,(9):37-42
文章以都汶公路为例,利用遥感解译技术快速获取地震诱发山地灾害类型及其对公路造成的严重损害类型,利用GPS对公路损毁灾害点准确定位,获得路基路面直接震害类型信息,同时对山地灾害遥感判识结果进行检验。通过分析认为公路沿线岩体岩性以及风化破碎程度的不同,对公路产生的损毁程度不相同;路基破坏程度与距离震中和断裂带的远近有密切关系;路基下方护坡的破坏与所处边坡的坡度有关;崩塌滑坡产生大量松散固体物质,雨季到来之后,极易暴发大规模泥石流,需要注意并防范泥石流对行车安全和道路交通的影响。  相似文献   

4.
This article is devoted to evaluating destructive earthquakes (magnitude >6) of Iran and determining properties of their source parameters. First of all, a database of documented earthquakes has been prepared via reliable references and causative faults of each event have been determined. Then, geometric parameters of each fault have been presented completely. Critical parameters such as Maximum Credible Rupture, MCR, and Maximum Credible Earthquake, MCE, have been compiled based on the geometrical parameters of the earthquake faults. The calculated parameters have been compared to the maximum earthquake and the surface rupture which have been recorded for the earthquake faults. Also, the distance between the epicenter of documented earthquake events and their causative faults has been calculated (the distance was less than 20 km for 90% of the data). Then, the distance between destructive earthquakes (with the magnitude more than 6) and the nearest active fault has been calculated. If the estimated distance is less than 20 km and the mechanism of the active fault and the event are reported the same, the active fault will be introduced as a probable causative fault of that earthquake. In the process, all of the available geological, tectonic, seismotectonic maps, aerial geophysical data as well as remote sensing images have been evaluated. Based on the quality and importance of earthquake data, the events have been classified into three categories: (1) the earthquakes which have their causative faults documented, (2) the events with magnitude higher than 7, and (3) the events with the magnitude between 6 and 7. For each category, related maps and tables have been compiled and presented. Some important faults and events have been also described throughout the paper. As mentioned in this paper, these faults are likely to be in high seismic regions with potential for large-magnitude events as they are long, deep and bound sectors of the margins characterized by different deformation and coupling rates on the plate interface.  相似文献   

5.
苏门答腊地震对柴达木地方震的触发作用   总被引:6,自引:3,他引:3  
2004年12月26日印度尼西亚苏门答腊西北海域发生40年来最强烈的地震,造成巨大伤亡和财产损失.大地震在4000km外的柴达木盆地西部地区狮子沟地震台阵网上有长达1000多秒的明显记录,也触发柴西地区地方震的发震频率在大地震之后一天内提高了10倍.从大地震触发的地方震活动分布来看,触发地震的发震断裂是英雄岭南侧花土沟断裂和红柳泉断裂.   相似文献   

6.
We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sedimentinduced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0–1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1–2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.  相似文献   

7.
Magnitude scale and quantification of earthquakes   总被引:1,自引:0,他引:1  
Despite various shortcomings, the earthquake magnitude scale is one of the most fundamental earthquake source parameters to be used for catalogs. Although use of a uniform scale is desirable, it is not always possible because of changes in instrumentation, the data reduction method and the magnitude formula, the station distribution, etc. As a result, various magnitude scales have been developed and are currently in use. Recent developments in seismometry and earthquake source theories provide more quantitative source parameters than the magnitude. In order to maintain continuity and uniformity of the data, it is important to relate these magnitude scales and the new parameters. In view of this importance, relations between different magnitude scales are examined with an emphasis on the difference in the period of the waves used for the magnitude determination. Use of several magnitude scales determined at different periods provides a convenient method for characterizing earthquakes. The moment magnitude can be used to quantify both shallow and deep earthquakes on the basis of wave energy radiated, and provides a uniform scheme.  相似文献   

8.
2014年8月3日16时30分, 在云南省昭通市鲁甸县(27.1°N, 103.3°E)发生Ms6.5地震, 震源深度10 km, 死亡617人, 失踪112人, 受伤3 143人, 受灾人口108.84万人.根据月亮赤纬角、太阳黑子极值年等周期变化及两者的叠加效应, 总结出2013—2014年是云南强震高危期, 具备Ms7地震的发生条件.次年, 利用基础SW前兆仪的临震预测指纹法信息, 制定了2014年底211号地震预测表, 预测了2014年8月四川(26.18°N, 105.33°E)将发生Ms5.3地震发生.2014年8月3日云南鲁甸Ms6.5地震表明: 这次地震的指纹法预测时间相差1天, 震中相差226 km, 震级误差Ms1.2.通过构造背景、地壳速度结构和震源机制研究, NW向的包谷垴-小河左旋走滑断裂是鲁甸地震的发震断裂.中下地壳低速(高导)体与包谷垴-小河断裂交接部位是流变界面能量释放的位置, 即本次地震的震源位置, 为板内地震三层次构造模式提供了一个新的案例.   相似文献   

9.
Earthquake damages are assessed based on a holistic approach using structural as well as non-structural factors to model earthquake damage distributions with Decision Tree Techniques, using the Answer Tree program and the damage data from recent major earthquakes in Turkey. The damage dataset consists of approximately 9,400 buildings that were surveyed to evaluate the factors affecting building damage after Erzincan [1992], Dinar [1995], and Kocaeli [1999] earthquakes. The earthquake damage is defined as the dependent variable, while earthquake magnitude (M), intensity (I) in the city, peak ground acceleration (PGA) in each city, epicenter distance (ED), building types (BT), number of storeys (NS), presence of soft storey (SS), building position (BP) on the site, and site conditions (SC) are independent variables in the proposed model. The damage level (DL) was classified with respect to red, yellow, and green codes. The main purpose was (1) to identify the factors controlling building damage during earthquakes; (b) to determine the most significant factor; (c) to evaluate the effects of different factors for different earthquakes; (d) to develop damage distribution models for different subgroups based on the Decision Tree Techniques.
Atilla AnsalEmail:
  相似文献   

10.
This study proposes a calculation method for regional earthquake-induced landslide susceptibility that applies the permanent seismic displacement calculated using Newmark’s sliding block analysis with estimated vertical and horizontal seismic motions. The proposed method takes into account the direction of slope failure based on the specified slope azimuth. The study results reveal the importance of predominant slope failure direction using a simple infinite slope model subjected to earthquakes. The target area for the earthquake-induced landslide susceptibility analysis constituted a region of more than 2000 km2 surrounding the epicenter of the Mid Niigata prefecture earthquake in 2004. An earthquake-induced landslide susceptibility map was created based on the proposed method with a specific combination of friction angle and cohesion, and the resulting data were compared to the landslide inventory map produced from aerial photographs following the Mid Niigata prefecture earthquake in 2004. To create the susceptibility map, geomaterial cohesion values for the slope were back-calculated to satisfy the minimum safety factor in the static state. This study also proposes a calculation method for the prediction rate and determines the back-calculated strength parameters of geomaterials. The proposed regional landslide susceptibility map will be useful for understanding potential slope failure locations and magnitude of damage, as well as for planning field investigation and preventing secondary disasters immediately after earthquakes.  相似文献   

11.
云南彝良907地震次生地质灾害特征分析   总被引:1,自引:0,他引:1  
2012年9月7日11时19分40秒,云南省彝良县发生M5.7级地震,12时16分29秒,再次发生M5.6级地震,两次地震诱发了大量的崩塌、滑坡、泥石流等次生地质灾害。通过现场调查,分析了本次地震次生地质灾害的主要特征:震后次生地质灾害数量明显增加、由地震直接诱发的地质灾害分布明显受震中控制;Ⅷ度区、Ⅶ度区的地震地质灾害点密度分别是Ⅵ度区地震地质灾害点密度的11倍与4.5倍;地质灾害的分布表现出很明显的上/下盘效应,上盘地质灾害密度是下盘地质灾害密度的2.6~3.9倍;震后新增次生地质灾害点的分布受岩土体性质控制明显;震后次生地质灾害降雨叠加效应与链生效应较为明显,具有震级小、灾情大、灾害多、规模小的特点。  相似文献   

12.
Prajapati  Sanjay K.  Kumar  Ashok  Chopra  Sumer  Bansal  B. K. 《Natural Hazards》2013,69(3):1781-1801

We compiled available information of damages and other effects caused by the September 18, 2011, Sikkim–Nepal border earthquake from the print and electronic media, and interpreted them to obtain Modified Mercalli Intensity (MMI) at over 142 locations. These values are used to prepare the intensity map of the Sikkim earthquake. The map reveals several interesting features. Within the meizoseismal area, the most heavily damaged villages are concentrated toward the eastern edge of the inferred fault, consistent with eastern directivity. The intensities are amplified significantly in areas located along rivers, within deltas or on coastal alluvium such as mud flats and salt pans. We have also derived empirical relation between MMI and ground motion parameters using least square regression technique and compared it with the available relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes which have occurred in NE Himalayas along with present intensity has been utilized for developing attenuation relationship for NE India using two-step regression analyses. The derived attenuation relation is useful for assessing damage of a potential future earthquake (earthquake scenario-based planning purposes) for the northeast Himalaya region.

  相似文献   

13.
In this study, we have prepared an intensity map based on macroseismic survey and all the available information from print and electronic media of damage and other effects due to March 05, 2012, M 4.9 Bahadurgarh (Haryana–Delhi border) earthquake and interpreted them to obtain modified Mercalli intensities (MMI) at over 62 locations surrounding the Haryana and Delhi. We have cross-checked the damage information from print and electronic media in the field at 25 sites within 110 km surrounding the epicenter for validation. Based on the questionnaire which is used in macroseismic survey and personal judgment, intensities were assigned accordingly as per physical survey at 25 sites and for rest based on media reporting. A maximum intensity of VI was assigned to this seismic event. Isoseismals of V and VI have been fully covered in the field observations. Beside this, some of the points have also been covered for isoseismal IV and isoseismal III and rest are based on media report only. The intensity map reveals several interesting features. Elliptically elongated shape of intensity map shows that most of the slightly damaged areas are concentrated toward the northwestern side of the epicenter having intensity V which may be due to directivity or site effects. A regression relation has also been derived between intensity and epicentral distance. The derived attenuation relation will be useful for assessing damage of a potential future earthquake (earthquake scenario–based planning purposes) for the Delhi NCR region.  相似文献   

14.
本文提出了一个新的地震机理模型:高温高压高导低速流变体震源腔(简称震源腔)与闭锁断层组合模型。高温高压下的软流圈物质在复杂相变空间中,受到温度场中的异重流作用和受迫振动作用而形成深源震源腔。随着软流圈物质上涌, 幔汁在温度差和压力差驱使下,涌入地壳中的物理空间,形成浅源地震震源腔。由于温度升高使得腔体内岩石部分熔融或全部熔融,释放出大量气液流体,拓展腔体空间范围,同时提升腔体内压。当腔体内部有效压力(即内压与上覆地壳压力之差)达到腔体边缘或者上方与脆性活动断层交会部位的岩石破坏强度时,震源腔便进入临界状态。当软流圈物质上涌继续向腔体内供能,或者由于星体连线在震源区造成触发作用,便引起震源腔的隐蔽爆炸,即隐爆,释放腔体内部积累的能量,同时释放区域构造应力场作用于闭锁断层积累的应变能。 腔体隐爆释放能量与腔体规模正相关。闭锁断层释放应变能与闭锁断层规模、闭锁区大小以及区域构造应力场强度相关。震源腔与脆性活动断层交会部位,是潜在震源位置。多年观测资料表明,震源腔从进入临界状态到隐爆,一般经历1~13天,平均7天。长期观测表明,潜在震中区在震前经常出现干旱、气温升高、海温升高、大量水汽释放等异常现象。通过超低频地震仪监测、重力波作用于水汽形成的地震云的观测、次声波的监测、卫星重力异常反映的高程面垂向震荡监测、以及地基卫星导航系统地面升降监测等,都显示出震源腔进入临界状态后的胀缩震荡引起震中及其外围地面的垂向振动。文中还给出了震源腔体隐爆遗迹的直接证据。  相似文献   

15.
Underground opening damage from earthquakes   总被引:18,自引:0,他引:18  
A summary of worldwide qualitative data regarding the behavior of underground openings during earthquakes is presented. This information has been collected for 192 reports of underground behavior from 85 earthquakes throughout the world. The data have been assembled into a data base to determine some of the significant factors that may affect underground stability. The parameters of interest are: (1) extent of damage; (2) overburden cover; (3) predominant rock type; (4) form of support (i.e. type of internal liner or opening support); (5) geographic location; and (6) magnitude and epicentral distance of the affecting earthquake. A significant contribution to this study is the development of a correlation between peak ground acceleration at the surface, overburden depth and damage. This relationship will allow for preliminary assessment of stability of new underground structures prior to extensive dynamic analyses. Also, the vulnerability of existing underground facilities may be assessed rapidly on the basis of the qualitative data presented herein.  相似文献   

16.
The January 25, 1946 earthquake in the central Valais region in southwest Switzerland was the strongest for the last 150 years. It reached an epicentral intensity Io of VIII in the area of Sierre. The Swiss Earthquake Catalogue (ECOS 2002) assigns a moment magnitude of Mw = 6.1 to the event. Assessment of recordings from European stations resulted in a moment magnitude of 5.8 (Bernardi et al. 2005). The earthquake caused moderate to high damage within a circle of about a 25 kilometer radius. Slight damage occurred up to a distance of 200 kilometers from the epicenter. The goal of this study was to reconstruct the damage field and consider its possible site-effects. We used an approach combining historical research with seismo-/geological investigation including a large number of experiments measuring the fundamental frequency of resonance and the shear-wave velocities of the sedimentary layers, using the characteristics of ambient vibration. This kind of research is relevant, since a huge alpine valley characterizes the Valais region, showing ground conditions that make site-effects likely for earthquakes. While we searched for damage in an unlimited area, our investigation of site-effects was limited to the Rhone valley and to Sion and Sierre in the central Valais region in particular.  相似文献   

17.
Coseismic changes in groundwater levels have been investigated throughout the world, but most studies have focused on the effects of one large earthquake. The aim of this study was to elucidate the spatial patterns of level changes in response to several earthquakes, and the relationship of the patterns to shallow and deep groundwater in the same area. We selected the Kumamoto City area in southwest Japan, a region with one of the richest groundwater resources in Japan, as our study site. Data from hourly measurements of groundwater levels in 54 wells were used to characterize the coseismic responses to four earthquakes that occurred in 2000, 2001, 2005, and 2008. Although the distance to the hypocenter (12–2573 km), and seismic energy (Mw = 5.0–8.0) of these earthquakes varied, systematic groundwater level changes were observed in the range of 0.01–0.67 m. Spatial patters of the level changes were clarified by interpolating the point data by a spline method. The zones where coseismic rises were observed were generally wider for deep groundwater than for shallow groundwater, probably as a result of an increase in compressive stress. General trends in the changes in groundwater levels, and calculated pressure changes, were clarified to be consistent in the deep groundwater, but the coseismic increases or decreases in compressive stress in the shallow groundwater were variable, depending on the distance to the earthquake epicenter. We developed a conceptual model of the mechanism underlying this phenomenon by assuming permeability enhancement induced by elastic strain and pore-pressure change over the depth range. In addition, the importance of local geology was identified, because levels in the area of Togawa lava (a porous andesite) tended to change more in magnitude, and more quickly, with a shorter recovery time, than levels measured in the area outside the lava.  相似文献   

18.
The Ms 8.0 Wenchuan earthquake of May 12, 2008 is one of the most disastrous earthquakes in China. The earthquake triggered tens of thousands of landslides over a broad area, including shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches, some of which buried large sections of some towns and dammed the rivers. The purpose of this study is to investigate correlations between the occurrence of landslides with geologic and geomorphologic conditions, and seismic parameters. Over 56,000 earthquake-triggered landslides, with a total area of 811 km2, are interpreted using aerial photographs and remote sensing images taken following the earthquake. The spatial distribution of these landslides is analyzed statistically using both landslide-point density (LPD), defined as the number of landslides per square kilometer, and landslide-area density (LAD), the percentage of the area affected by landslides, to determine how the occurrence of landslides correlates with distance from the epicenter, distance from the major surface rupture, seismic intensity and peak ground acceleration (PGA), slope angle, slope aspect, elevation, and lithology. It is found that both LAD and LPD have strong positive correlations with slope steepness, distance from the major surface rupture and seismic intensity, and that Pre-Sinian schist, and Cambrian sandstone and siltstone intercalated with slate have the most concentrated landslide activities, followed by the Permian limestone intercalated with shale, and Devonian limestone. Statistical analyses also indicate that the major surface rupture has influence on the spatial distribution of landslides, because LAD and LPD are relatively higher on the hanging wall than on the footwall. However, the correlation between the occurrence of landslides with distance from the epicenter of the earthquake is complicated, rather than a relatively simple negative correlation as found from other reported cases of earthquakes. This is possibly due to complicated rupture processes of the earthquake.  相似文献   

19.
Landslide susceptibility evaluation is one of the most important issues in watershed management. After an earthquake, the landslide susceptibility decreases functionally with increases in the distance from the epicenter. Under the same rainfall intensity, landslides are more likely to occur in an area where earthquakes occur more frequently. However, the questions of how much an earthquake should be weighted and how to evaluate the effects of an earthquake still need to be studied. To understand how earthquakes affect rainfall-triggered landslides, the horizontal peak ground acceleration (PGA) data from the Central Weather Bureau Seismic Network is used as the earthquake factor and combined with other factors to determine the weight of earthquakes in landslide susceptibility using logistic regression. The results indicate that the ability of landslide prediction is better when considering the earthquake factor. This study also proved that although there are no co-seismic landslides (after earthquakes) in the study area, the earthquake factor is still required to increase the model accuracy. PGA has been described as a usable factor. In areas with frequent earthquakes and high geological activity, when using historical data to evaluate landslide susceptibility, the earthquake factor should be taken into consideration to prevent errors.  相似文献   

20.
Great earthquakes in the past (e.g. 1869 Cachar earthquake, 1897 great Assam earthquake) have caused large scale damage and ground liquefaction in the Guwahati city. Moreover, seismologists are of opinion that a great earthquake might occur in the unruptured segment of the North-East Himalaya that is near to Guwahati city. In this paper, the liquefaction hazard due to these events have been simulated. The obtained results are in general agreement with the reported damages due to the past earthquakes. The central part of the city (i.e. Dispur, GS road), that has large thickness of soft soil deposit and shallow ground water table, is highly vulnerable to liquefaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号