首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):267-284
The Hauraki Gulf is a semi-enclosed sea next to the largest population centre in New Zealand, the Auckland metropolitan region. The potential tsunami hazard is of concern to regional and local planners around the Hauraki Gulf. The Hauraki Gulf has recorded 11 tsunamis and one meteorological tsunami (rissaga) since 1840.The historical tsunami data are relatively sparse, particularly for the largest events in 1868 and 1883. Moreover, local sources may produce damaging tsunamis but none has occurred during recorded history. Therefore numerical modelling of potential tsunami events provides a powerful tool to obtain data for planning purposes. Three main scenarios have been identified for numerical modelling:1. A teletsunami event from an earthquake off the West Coast of South America. Historically this region has produced the largest teletsunamis in the Hauraki Gulf.2. A tsunami generated by a local earthquake along the Kerepehi Fault. This fault bisects the Gulf, has been active during the last century at the southern inland end, and is overlain by a considerable thickness of soft sediment that may amplify the seismic waves.3. A tsunami generated by a volcanic eruption within the Auckland Volcanic Field. This field has involved a series of mainly monogenetic basaltic eruptions over the last 140,000 years. Many of these eruptions have involved phreatomagmatic eruptions around the coastal margins, or within the shallow waters close to Auckland.  相似文献   

2.

Large near-field tsunamis pose a significant threat to the Canadian West Coast due to its proximity to the circum-Pacific belt where a significant tsunami-inducing earthquake event from the Cascadia subduction zone is expected. This study investigated the risks associated with such an event in terms of pedestrian evacuation needs and plans for the Town of Tofino, a small community located on the West Coast of Vancouver Island. The population-at-risk within the hazard zone and its ability to evacuate to safety is evaluated using anisotropic path-distance modelling. Mitigation measures, such as vertical evacuation buildings, are quantitatively evaluated. Site-specific inundation modelling was not performed as part of this study; tsunami hazard and safe zones were computed using a range of run-ups varying between 3 and 25 m. It was established that up to 80% of the population is within the maximum hazard zone considered. This evacuation modelling exercise indicates that a maximum of 13% of the population would have insufficient time to reach safety when using a mobility-impaired ambulatory speed. The use of three vertical evacuation buildings can reduce the risk of losing population in this category by 99%. Although some conservative assumptions were used (vertical datum at higher high water, reductions in safe zones by generalization process and mobility-impaired evacuation speeds), the evacuation potential is likely overestimated due to the coarseness of the topographic data used in the evacuation modelling and from an overestimated first wave arrival time. This is the first Canadian study which used anisotropic evacuation modelling to evaluate the vulnerability of a Canadian community to tsunami inundation.

  相似文献   

3.
A suite of tsunami spaced evenly along the subduction zone to the south of Indonesia (the Sunda Arc) were numerically modelled in order to make a preliminary estimate of the level of threat faced by Western Australia from tsunami generated along the Arc. Offshore wave heights from these tsunami were predicted to be significantly higher along the northern part of the west Australian coast than for the rest of the coast south of the town of Exmouth. In particular, the area around Exmouth may face a higher tsunami hazard than other areas of the West Australian coast nearby. Large earthquakes offshore of Java and Sumbawa are likely to be a greater hazard to WA than those offshore of Sumatra. Our numerical models indicate that a magnitude 9 or above earthquake along the eastern part of the Sunda Arc has the potential to significantly impact a large part of the West Australian coastline. The Australian government reserves the right to retain a non-exclusive, royalty free license in and to any copyright.  相似文献   

4.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

5.
This paper outlines the field measurements and numerical modelling carried out to develop a high-resolution tsunami inundation map, as a case study, for the city of Trincomalee on the east coast of Sri Lanka, which was devastated by the 2004 tsunami. We employ the deterministic approach together with numerical simulations based on the probable worst-case scenario to derive the inundation map. Linear and non-linear versions of shallow-water equations have been utilized to simulate tsunami propagation and onshore inundation, respectively. The field data considered in the present paper comprise the extent of inundation, the tsunami heights and the arrival times whilst the model results include the spatial distribution of the flow depth, the peak current speeds and the momentum flux. The computed extent of onshore inundation reproduces the observed overall pattern of inundation in most areas barring the south-eastern part of the city. Further, the model simulations suggest maximum flow depths up to about 2 m in most areas of the city whilst patches of flow depths exceeding 2 m can be seen in a narrow strip along the coastline. The computed current speeds also exceed 3 m/s at some locations adjacent to the shoreline.  相似文献   

6.
Kakawis Lake situated four metres above sea level on western Vancouver Island, British Columbia, Canada, was the target of a palaeotsunami investigation. Six percussion cores recovered from this lake contain six anomalous deposits interbedded within the unconsolidated lacustrine sediments. Detailed sedimentological, geophysical and macro-fraction analyses were performed. The methods new to palaeoseismic approaches proved to be successful tools to characterize the anomalously coarse layers enriched in terrestrial plant detritus and marine shells. Based on at least eight types of evidence, six tsunami inundations are suggested as mechanisms responsible for the anomalous deposition, spanning from 3,634 to 2,534 cal yrs BP. Each tsunami event consists of a combination of different lithological facies resulting from different stages of tsunami inundation and settling of the material in the lake basin (pulses and inter-pulses). Tsunami deposits in lakes are shown to be less vulnerable to erosional and bioturbation processes than those found in marshes or beaches as well as underwater marine environments. However, few palaeoseismic studies have been carried out in low-elevation lakes along the Cascadia Subduction Zone region. The three last tsunami events known to have inundated areas along the Pacific shores of southern British Columbia, Canada and northern USA are not present at Kakawis Lake, establishing a current <4 m above mean sea level vertical limit as possible maximum tsunami height for areas located away from fjord heads on Vancouver Island. The anomalous deposits found in Kakawis Lake may be the oldest geological evidence of inferred tsunami on Vancouver Island, providing a possible recurrence interval between 200 and 400 years.  相似文献   

7.
The potential impacts of tsunamis along the Catalan Coast (NW Mediterranean) are analysed using numerical modelling. The region is characterized by moderate to low seismic activity and by moderate- to low-magnitude earthquakes. However, the occurrence of historical strong earthquakes and the location of several active offshore faults in front of the coast suggest that the possibility of an earthquake-triggered tsunami is not negligible although of low probability. Up to five faults have been identified to generate tsunamis, being the highest associated possible seismic magnitudes of up to 7.6. Coastal flooding and port agitation are characterized using the Worst-case Credible Tsunami Scenario Analysis approach. The results show a multiple fault source contribution to tsunami hazard. The shelf dimensions and the existence of submerged canyons control the tsunami propagation. In wide shelves, waves travelling offshore may become trapped by refraction causing the wave energy to reach the coastline at some distance from the origin. The free surface water elevation increases at the head of the canyons due to the sharp depth gradients. The effects of potential tsunamis would be very harmful in low-lying coastal stretches, such as deltas, with a high population concentration, assets and infrastructures. The Ebro delta appears to be the most exposed coast, and about the 20% of the delta surface is prone to flooding due to its extremely low-lying nature. The activity at Barcelona port will be severely affected by inflow backflow current at the entrance of up to 2 m/s.  相似文献   

8.
Following the catastrophic “Great Sumatra–Andaman” earthquake- tsunami in the Indian Ocean on the 26th December 2004, questions have been asked about the frequency and magnitude of tsunami within the region. We present a summary of the previously published lists of Indian Ocean Tsunami (IOT) and the results of a preliminary search of archival materials held at the India Records Office, at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a little known tsunami in 1843. We present the results of modelling of the 2004, 1861 and 1833 tsunami generated by earthquakes off Sumatra and the 1945 Makran earthquake and tsunami, and examine how these results help to explain some of the historical observations. The highly directional component to tsunami propagation illustrated by the numerical models may explain why we are unable to locate archival records of the 1861 and 1833 tsunami at important locations like Rangoon, Kolkata (formally Calcutta) and Chennai (formally Madras), despite reports that these events created large tsunami that inundated western Sumatra. The numerical models identify other areas (particularly the central and southern Indian Ocean islands) where the 1833 tsunami may have had a large enough effect to produce a historic record. We recommend further archival research, coastal geological investigations of tsunami impacts and detailed modelling of tsunami propagation to better understand the record and effects of tsunami in the Indian Ocean and to estimate their likelihood of occurring in the future.  相似文献   

9.
Co-seismic phenomena along the south coastline included liquefaction, subsidenceand tsunami. Construction on areas composed of fluvial and alluvial sediments aswell as unconsolidated fill increased the risk by creating potential for amplificationof seismic waves. Cyclic mobility liquefaction was common along the coastline, andlevel-ground liquefaction was observed. Flow liquefaction is held forth as a possibilityin the Deirmendere submarine landslide. Damage to structures was markedly more in areas of unconsolidated sediments. One or more tsunami struck immediately after the event; the uniformity of tsunami impact indicating a wave coming from 310° suggests that submarine faulting was the major source of tsunami. Over 800,000 m2 of subsidence resulted from sediment slumping, fault controlled subsidence, and possibly post-liquefaction sediment compaction. After a brief period of post-event abandonment, reclamation and use of coastal areas is well underway. This creates a tension between human desires pushing for quick and inexpensive re-inhabitation of the coastal areas, and the needs for zoning and building codes for risk reduction. In this high-risk area suchcontrary cultural mandates cannot yield ideal results. It is suggested that an alternativemodel of immediate post-event creation of parks and natural areas that would yield benefit is preferable in coastal areas rather than the enforcement approach currently favored.  相似文献   

10.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

11.
Flood risk curves and uncertainty bounds   总被引:7,自引:5,他引:2  
The Scotia Arc is one of two regions in the Atlantic Ocean with greater potential for tsunami generation from seismic and volcanic sources. A numerical modeling study was undertaken to determine tsunami generation from postulated sources along the Arc and tsunami wave amplification or attenuation along the Patagonian continental shelf. Sea level oscillation represented by a simple sinusoidal wave function applied at the boundary of the numerical grid, which simulated the tsunami entering the computational domain, was implemented as forcing. The validation of this model was carried out by comparing the maximum amplitudes recorded and simulated at Santa Teresita and Mar del Plata (Buenos Aires province) after the occurrence of earthquake and subsequent tsunami in Sumatra (December 2004). From numerical simulations it can be seen that the tsunami propagation is highly affected by bathymetric refraction on the Patagonian continental shelf and the wave amplitude is significantly attenuated on the inner continental shelf. Maximum amplifications were obtained around Malvinas (Falkland) Islands and Burdwood bank because the wave propagates almost without refracting and the shoaling effect is highly significant there.  相似文献   

12.
The Holocene Storegga Slide tsunami in the United Kingdom   总被引:1,自引:0,他引:1  
All currently known sites in the United Kingdom with evidence for the Holocene Storegga Slide tsunami are described. Information on the altitude, distribution, stratigraphical context, age, particle size profile and microfossil characteristics of the deposits is presented. The tsunami involved a greater area than previously described, reaching a coastline over 600 km long. The ubiquitous sand layer which forms the main deposit associated with the event is shown to exhibit a consistent morphology and a particle size profile marked by fining-upwards sequences. An analysis of new and previously published radiocarbon dates indicates that from evidence in the United Kingdom, the event took place sometime around 7100 radiocarbon years BP (7900 calibrated years BP). A new isobase model for mainland Scotland and adjacent areas, providing a preliminary estimate of land uplift since the tsunami, is presented. The model estimates contemporary sea surface level offshore at 14 m below the present day mean high water spring tides. Tsunami sediment run-up is greatest in inlets, where it reaches at least 25 m on Shetland and at least 5 m along the mainland coastline to the south, and run-up of the tsunami would have exceeded these values. The tsunami sediments identified here are considered particularly valuable as a synchronous marker horizon.  相似文献   

13.
Prognostic characteristics of tsunamis in the East (Japan) Sea based on numerical simulations are investigated by using linear long wave theory. Due to the lack of observed data, the concept of the synthetic catalogue is applied to generate possible tsunami scenarios. It includes four real events that occurred in the East (Japan) Sea during the 20th century, 24 hypothetical tsunamigenic earthquakes located in the gap zones of the seismic map, and 76 idealized model ‘hydrodynamic’ sources covering the eastern part of the East (Japan) Sea uniformly. The tsunami wave height distributions along the East (Japan) Sea coastline due to these hypothetical events are computed. From the geographical distributions of tsunami wave height for all possible events, it is found that there exist several coastal locations where the tsunami risk is relatively lower than in other zones. The relation between the maximal value of the tsunami height and its average value is analyzed. It is found that the maximal tsunami height does not exceed the mean wave height times a constant. The uniform bounded curve for all areas can be obtained if the mean wave height is replaced by the modified mean wave height (1/3 of largest waves). The problem of quantitative definition of the prognostic tsunami wave height for each location based on the data from the synthetic catalogue is discussed. The results of tsunami wave height analysis based on the synthetic catalogue can be used as a tool for coastal disaster mitigation planning.  相似文献   

14.
Static and dynamic rock slope stability analyses were performed using a numerical discontinuum modelling technique for a 700-m high rock slope in western Norway. The rock slope has been investigated by the Geological Survey of Norway (NGU), which has been carrying out rock slide studies for the county Møre and Romsdal in western Norway. The purpose of numerical modelling was to estimate the volume of the rock mass that could potentially slide under static and dynamic forces. This estimation was required to assess the run-up heights (tsunami) in a fjord that could potentially be caused by the rockslide. Three cases have been simulated for predicting the behaviour of the rock slope. First, an initial static loading is applied in the numerical model to simulate the prevailing rock mass conditions at the site. Second, saturated and weathered joint conditions are modelled by reducing the residual friction angle along the discontinuities of the rock mass. In doing so, the model simulates the effect of degradation of discontinuities in the rock slope. Third, a dynamic loading, based on peak ground accelerations expected in the area, is applied to simulate dynamic earthquake conditions.

These numerical studies have provided some useful insights into the deformation mechanisms in the rock slope. Both sliding and rotation of blocks start to occur once the residual friction angle along the discontinuities is reduced and when the region is shaken by a strong earthquake. The results indicate that, due to variations in the inclination of discontinuities, the entire slope does not become unstable and that down-slope sliding and rotation of blocks occur mainly on the top layers of the slope. Within the range of parameter values considered for this study, it is unlikely that the whole rock slope can be destabilised. The study provides an illustration of how the geo-mechanical properties of a rock mass can be integrated in a discontinuum rock slope model, which is used for predicting the behaviour of the slope under existing environmental and earthquake conditions. This model has helped not only to better understand the dynamics of the rockslide but also to estimate the potential rock volume that can become unstable when subjected to static and dynamic loads.  相似文献   


15.

Given the recent historical disastrous tsunamis and the knowledge that the Arabian Gulf (AG) is tectonically active, this study aimed to evaluate tsunami hazards in Kuwait from both submarine earthquakes and subaerial landslides. Despite the low or unknown tsunami risks that impose potential threats to the coastal area’s infrastructures and population of Kuwait, such an investigation is important to sustain the economy and safety of life. This study focused on tsunamis generated by submarine earthquakes with earthquake magnitudes (M w ) of 8.3–9.0 along the Makran Subduction Zone (MSZ) and subaerial landslides with volumes of 0.75–2.0 km3 from six sources along the Iranian coast inside the AG and one source at the Gulf entrance in Oman. The level of tsunami hazards associated with these tsunamigenic sources was evaluated using numerical modeling. Tsunami model was applied to conduct a numerical tsunami simulation and predict tsunami propagation. For landslide sources, a two-layer model was proposed to solve nonlinear longwave equations within two interfacing layers with appropriate kinematic and dynamic boundary conditions. Threat level maps along the coasts of the AG and Kuwait were developed to illustrate the impacts of potential tsunamis triggered by submarine earthquakes of different scales and subaerial landslides at different sources. GEBCO 30 arc-second grid data and others were used as bathymetry and topography data for numerical modeling. Earthquakes of M w 8.3 and M w 8.6 along the MSZ had low and considerable impacts, respectively, at the Gulf entrance, but negligible impacts on Kuwait. An earthquake of M w 9.0 had a remarkable impact for the entire Gulf region and generated a maximum tsunami amplitude of up to 0.5 m along the Kuwaiti coastline 12 h after the earthquake. In the case of landslides inside the AG, the majority impact occurred locally near the sources. The landslide source opposite to Kuwait Bay generated the maximum tsunami amplitudes reaching 0.3 m inside Kuwait Bay and 1.8 m along the southern coasts of Kuwait.

  相似文献   

16.
We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (<1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (<1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard.  相似文献   

17.
The last great earthquake in northern Chile took place in 1877, and the ensuing tsunami affected not only that region but also Central Chile. For example, the Bay of Concepción, which is located 1,500 km south of the tsunami source, experienced an inundation height of around 3 m. Ports are important in the Chilean economy, due to the fact that a large percentage of Chilean exports (excluding copper) use ports located in Central Chile. With this in mind, the authors investigated the potential effect of an 1877-like tsunami on the main ports of Central Chile. To do this, the dispersive wave model Non-hydrostatic Evolution of Ocean WAVEs was used. In addition, the first tsunami forecast model for Talcahuano, inside the Bay of Concepción, was developed by means of numerical simulation of several events of different moment magnitudes. The results showed that most of the important ports (Valparaiso, San Antonio, San Vicente and Coronel) had inundation heights on the order of just 1 m, while inundation levels in Talcahuano reached up to 3.5 m. The forecast model for Talcahuano uses only earthquake magnitude, focal depth and tide level to determine tsunami inundation heights. In addition, the tsunami arrival time was computed to be 3 h, and the maximum tsunami amplitude takes place at 4 h and 45 min after the earthquake.  相似文献   

18.
Numerical Simulation of the 1918 Puerto Rico Tsunami   总被引:1,自引:0,他引:1  
Mercado  A.  McCann  W. 《Natural Hazards》1998,18(1):57-76
The Caribbean Sea region is well known for its hurricanes, and less known for tsunamis. As part of its responsibilities in hazard assessment and mitigation, the U.S.A. Federal Emergency Management Agency, and the Puerto Rico Civil Defense, funded a pilot study to perform a numerical simulation of the 1918 Puerto Rico tsunami, one of the most deadly in the region. As part of the study a review has been made of the tectonic and tsunamigenic environment around Puerto Rico, the fault parameters for the 1918 event have been estimated, and a numerical simulation has been done using a tsunami propagation and runup model obtained through the Tsunami Inundation Modeling for Exchange (TIME) program. Model results have been compared with the observed runup values all along the west coast of Puerto Rico.  相似文献   

19.
20.
The hybrid numerical model had been developed to simulate a complicated 3D flow around structures generated by tsunami. In the model, the conventional 2D model is adopted for the wide region far from structures and the 3D non-hydrostatic pressure model is used in the limited region adjacent to structures. The applicability of the model is shown by comparisons of the numerical results with the experimental results of the laboratory model tests and the numerical analysis results of the conventional whole 2D simulation. In addition, the effect of a submerged structure at the opening of a breakwater is discussed from the numerical simulations by the hybrid model. The submerged structure improves the stability of the rubble mound and reduces the tsunami inflow into the bay, while it increases the water surface velocity around the opening of the breakwater. The increase of surface velocity causes the increases of impulsive forces by collision with drafts and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号