首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the landslide susceptibility zonation of Tevankarai Ar sub-watershed using weighted similar choice fuzzy method in a GIS environment. There has been a rapid increase in landslide occurrences in the Kodaikkanal town and area surrounding the town specially in the settlements around the town and road links leading to and from the town. This necessitates a detailed study of slope instability problems in this area. It is observed that these incidences occur frequently during the monsoon and summer showers. Rainfall is identified as the prime triggering factor. Eleven physical factors that cause instability are identified as causative factors from the field investigations and landslide occurrences. Land use pattern, slope gradient, curvature and aspect, weathering index which are evaluated from the weathering ratios of different chemical constituents of the three major lithological variations, soil type, hydraulic conductivity of soil and soil thickness, geomorphology, drainage, and lineament have been utilized to prepare the spatial variation. A weighted similar choice fuzzy model which ranks a set of alternatives by identifying the similarity between the outcome of alternatives and outcome of ideal alternatives is used to rank the causative factors. Each causative factor is classified into sub-categories and rated based on their effect on stimulating the landslide event using qualitative judgment derived from field studies and landslide history. The prepared thematic maps of causative factors are integrated, utilizing the GIS software Arcmap. The outcome has projected the low, moderate, high, and very high landslide susceptibility zones. The high-hazard and very high-hazard areas fall in the northwestern part characterized by croplands and agricultural plantations, while the moderate hazard zones are seen in prominent settlements and low-hazard zones are observed in the sparse settlements and zones of less agricultural activity. The model is verified using the relative landslide density (R) index, and the susceptibility map is found to be consistent with the mapped landslide incidences. The results from this study illustrate that the use of weighted similar choice fuzzy method is suitable for landslide susceptibility mapping on regional scale in growing hill towns as Kodaikkanal town.  相似文献   

2.
Landslides cause extensive loss of life and property in the Nepal Himalaya. Since the late 1980s, different mathematical models have been developed and applied for landslide susceptibility mapping and hazard assessment in Nepal. The main goal of this paper is to apply fuzzy logic to landslide susceptibility mapping in the Ghurmi-Dhad Khola area, Eastern Nepal. Seven causative factors are considered: slope angle, slope aspect, distance from drainage, land use, geology, distance from faults and folds, soil and rock type. Likelihood ratios are obtained for each class of causative factors by comparison with past landslide occurrences. The ratios are normalized between zero and one to obtain fuzzy membership values. Further, different fuzzy operators are applied to generate landslide susceptibility maps. Comparison with the landslide inventory map reveals that the fuzzy gamma operator with a γ-value of 0.60 yields the best prediction accuracy. Consequently, this operator is used to produce the final landslide susceptibility zonation map.  相似文献   

3.
For assessing landslide susceptibility, the spatial distribution of landslides in the field is essential. The landslide inventory map is prepared on the basis of historical information of individual landslide events from different sources such as previously published reports, satellite imageries, aerial photographs and interview with local inhabitants. Then, the distribution of landslides in the study area is verified with field surveys. However, the selection of contributing factors for modelling landslide susceptibility is an inhibit task. The previous studies show that the factors are chosen as per availability of data. This paper documents the landslide susceptibility mapping in the Garuwa sub-basin, East Nepal using frequency ratio method. Nine different contributing factors are considered: slope aspect, slope angle, slope shape, relative relief, geology, distance from faults, land use, distance from drainage and annual rainfall. To analyse the effect of contributing factors, the landslide susceptibility index maps are generated four times using (a) topographical factors and geological factors, (b) topographical factors, geological factors and land use, (c) topographical factors, geological factors, land use and drainage and (d) all nine causative factors. By comparing with the pre-existing landslides, the fourth case (considering all nine causative factors) yields the best success rate accuracy, i.e. 81.19 %, which is then used to produce the final landslide susceptibility zonation map. Then, the final landslide susceptibility map is validated through chi-square test. The standard chi-square value with 3 degrees of freedom at the 0.001 significance level is 16.3, whereas the calculated chi-square value is 7,125.79. Since the calculated chi-square value is greater than the standard chi-square value, it can be concluded that the landslide susceptibility map is considered as statistically significant. Moreover, the results show that the predicted susceptibility levels are found to be in good agreement with the past landslide occurrences.  相似文献   

4.
Landslides are one of the major natural disasters that occur in the Himalayan range with recurring frequency, causing enormous loss of life and property every year. Preparation of landslide inventory maps and landslide susceptibility zonation maps are the important tasks to be taken into account initially for safe mitigation measures. The present paper focuses on landslide susceptibility maps of the Ghurmi–Dhad Khola area, east Nepal, using Geographic Information System. For this purpose, the landslide susceptibility maps are prepared by using the heuristic and bivariate statistical methods. The parameters considered for the study are slope angle, slope aspect, elevation, distance from drainage, geology, land cover, rock and soil type, and distance from faults and folds. The landslide susceptibility zonation map produced from the heuristic method shows that 42.59 % of the observed landslide falls under the very high susceptible zone and 33.00 % under the high susceptible zone. Likewise, the landslide susceptibility zonation map produced from the bivariate method depicts that 44.19 % of the observed landslide falls under the very high susceptible zone and 31.59 % under the high susceptible zone. Both the landslide susceptibility zonation maps are identical, and success rates of both the maps are above 80 %. While comparing the landslide susceptibility maps obtained from two different methods, about 78 % of the study area falls in the identical susceptible zones. Special attention should be taken into consideration for the construction works in the areas which have been spatially agreed as very high and high susceptible zones from both techniques. Moreover, these maps can be used for slope management, land use planning, disaster management planning, etc., by the concerned authorities.  相似文献   

5.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

6.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

7.
Landslides commonly occurs in hilly areas and causes an enormous loss iof life and property every year. National highway-1D (NH-1D) is the only road link between the two districts (Kargil and Leh) of Ladakh region that connects these districts with Kashmir valley. The landslide failure record of the recent past along this sector of the highway is not available. The present study documents landslide susceptible zones and records occurrence of 60 landslides during the last 4 years showing an increasing trend in the occurrence of landslides over these years in this sector. The landslide susceptibility zonation map has been prepared based on the numerical rating of ten major factors viz. slope morphometry, lithology, structure, relative relief, land cover, landuse, rainfall, hydrological conditions, landslide incidences and Slope Erosion, categorised the area in different zones of instability based on the intensity of susceptibility. The landslide susceptibility map of the area encompassing 73.03 km2 is divided into 150 facets. Out of the total of 150 facets, 85 facets fall in low susceptibility zone covering 43.56 km2 which constitute about 59.65% of the total area under investigation with a record of 5 landslides; 40 facets fall in the moderate susceptibility zone covering 16.94km2 which constitutes about 23.19% of the study area with a record of 20 landslides; and 25 facets fall in the high susceptibility zone covering 12.53 km2 which constitute about 17.15% of the study area with a record of 35 landslides. Most of the facets which fall in HSZ are attributed to slope modification for road widening.  相似文献   

8.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

9.
A Luoi is a Vietnamese–Laotian border district situated in the western part of Thua Thien Hue province, central Vietnam, where landslides occur frequently and seriously affect local living conditions. This study focuses on the spatial analysis of landslide susceptibility in this 263-km2 area. To analyze landslide manifestation in the study area, causative factor maps are derived of slope angle, weathering, land use, geomorphology, fault density, geology, drainage distance, elevation, and precipitation. The analytical hierarchical process approach is used to combine these maps for landslide susceptibility mapping. A landslide susceptibility zonation map with four landslide susceptibility classes, i.e. low, moderate, high, and very high susceptibility for landsliding, is derived based on the correspondence with an inventory of observed landslides. The final map indicates that about 37% of the area is very highly susceptible for landsliding and about 22% is highly susceptible, which means that more than half of the area should be considered prone to landsliding.  相似文献   

10.
Landslide hazard evaluation and zonation mapping in mountainous terrain   总被引:33,自引:0,他引:33  
Landslide hazard zonation (LHZ) maps are of great help to planners and field engineers for selecting suitable locations to implement development schemes in mountainous terrain, as well as, for adopting appropriate mitigation measures in unstable hazard-prone areas. A new quantitative approach has been evolved, based on major causative factors of slope instability. A case study of landslide hazard zonation in the Himalaya, adopting a landslide- hazard evaluation factor (LHEF) rating scheme, has been presented.  相似文献   

11.
The landslide studies can be categorized as pre- and postdisaster studies. The predisaster studies include spatial prediction of potential landslide zones known as landslide susceptibility zonation (LSZ) mapping to identify the areas/locales susceptible to landslide hazard. The LSZ maps provide an assessment of the safety of existing habitations and infrastructural/functional elements and help plan further developmental activities in the hilly regions. Landslides are one of the natural geohazards that affect at least 15% of land area of India. Different types of landslides occur frequently in geodynamical active domains of the Himalayas. In India, various techniques have been developed and adopted for LSZ mapping of different regions. However, the technique for LSZ mapping is not yet standardized. The present research is an attempt in this direction only. In our earlier work (Kanungo et al. 2006), a detailed study on conventional, artificial neural network (ANN)- black box-, fuzzy set-based and combined neural and fuzzy weighting techniques for LSZ mapping in Darjeeling Himalayas has been documented. In this paper, other techniques such as combined neural and certainty factor concept along with combined neural and likelihood ratio techniques have been assessed in comparison with combined neural and fuzzy technique for the preparation of LSZ maps of the same study area in parts of Darjeeling Himalayas. It is observed from the present study that the LSZ map produced using combined neural and fuzzy approach appears to be the most accurate one as in this case only 2.3% of the total area is found to be categorized as very high susceptibility zone and contains 30.1% of the existing landslide area. This approach can serve as one of the key objective approaches for spatial prediction of landslide hazards in hilly terrain.  相似文献   

12.
Landslide susceptibility mapping and spatial prediction have been carried out for the headwater region of Manimala river basin in the Western Ghats of Kerala, India, through geographic information technology and bayesian statistics, Weights of Evidence (WofE) model. The variables such as geomorphology, slope, relative relief, terrain curvature, slope length and steepness, soil type and land use/land cover are considered as factors that translate the terrain susceptible to landsliding. The quantitative relationship between landslides and the causative factors were statistically weighted using the ArcSDM extension of ArcGIS software. The posterior probability map, produced on the basis of predictive weights for each variable by combining the weighted layers in GIS, shows a high posterior probability value of 0.1 (highly possible) with a standard deviation of 0.0025. The discrete susceptibility classes in the reclassified posterior probability map reveals that the high and moderate landslide susceptibility classes cover 0.78 and 14.93% respectively of the total study area. The result was validated using the Area Under Curve (AUC) method with a separate set of landslide locations and the validation demonstrates high prediction accuracy with a prediction rate of 81.32%.  相似文献   

13.
This paper presents a methodology for developing a landslide hazard zonation map by integration of global positioning system (GPS), geographic information system (GIS), and remote sensing (RS) for Western Himalayan Kaghan Valley of Pakistan. The landslides in the study area have been located and mapped by using GPS. Eleven causative factors such as landuse, elevation, geology, rainfall intensity, slope inclination, soil, slope aspect, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams were analyzed for occurrence of landslides. These factors were used with a modified form of pixel-based information value model to obtain landslide hazard zones. The matrix analysis was performed in remote sensing to produce a landslide hazard zonation map. The causative factors with the highest effect of landslide occurrence were landuse, rainfall intensity, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams. In conclusion, we found that landslide occurrence was only in moderate, high, or very high hazard zones, and no landslides were in low or very low hazard zones showing 100% accuracy of our results. The landslide hazard zonation map showed that the current main road of the valley was in the zones of high or very high hazard. Two new safe road routes were suggested by using the GIS technology.  相似文献   

14.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

15.
For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.  相似文献   

16.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

17.
. Regional landslide susceptibility assessments pose complex problems. To solve these problems, numerous approaches, such as statistical analysis, geotechnical engineering approach, geomorphologic approach and fuzzy logic, have been employed. However, all the available methods for regional landslide susceptibility assessments have some uncertainties due to a lack of knowledge and variability. Minimizing these uncertainties provides realistic approaches. Use of the fuzzy logic approach to produce a landslide susceptibility map of a landslide-prone area in NW Turkey is the main purpose of the present study. For this purpose, the study includes five main stages, these being the preparation of a landslide inventory of the study area, the application of factor analysis, the extraction of fuzzy if-then rules, the use of a geographical information system, and the control of the reliability of the resulting landslide susceptibility map. Slope angle, slope aspect, land use, weathering depth, water conditions and topographical elevation were considered as landslide conditioning factors for the study area. A total of 23 if-then rules was extracted from the field data. Employing these rules, fuzzified index maps representing each parameter were obtained. Finally, combining these maps, the landslide susceptibility map of the area was prepared. When compared with the landslide susceptibility map, the landslides identified in the area were found to be located in the very high- and high-susceptibility zones. As far as the performance of the fuzzy approach for processing is concerned, the images appear to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

18.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

19.
Garhwal Himalayas are seismically very active and simultaneously suffering from landslide hazards. Landslides are one of the most frequent natural hazards in Himalayas causing damages worth more than one billion US$ and around 200 deaths every year. Thus, it is of paramount importance to identify the landslide causative factors to study them carefully and rank them as per their influence on the occurrence of landslides. The difference image of GIS-derived landslide susceptibility zonation maps prepared for pre- and post-Chamoli earthquake shows the effect of seismic shaking on the occurrence of landslides in the Garhwal Himalaya. An attempt has been made to incorporate seismic shaking parameters in terms of peak ground acceleration with other static landslide causative factors to produce landslide susceptibility zonation map in geographic information system environment. In this paper, probabilistic seismic hazard analysis has been carried out to calculate peak ground acceleration values at different time periods for estimating seismic shaking conditions in the study area. Further, these values are used as one of the causative factors of landslides in the study area and it is observed that it refines the preparation of landslide susceptibility zonation map in seismically active areas like Garhwal Himalayas.  相似文献   

20.
GIS-based landslide susceptibility maps for the Kankai watershed in east Nepal are developed using the frequency ratio method and the multiple linear regression technique. The maps are derived from comparing observed landslides with possible causative factors: slope angle, slope aspect, slope curvature, relative relief, distance from drainage, land use, geology, distance from faults and mean annual rainfall. The consistency of the maps is evaluated using landslide density analysis, success rate analysis and spatially agreed area approach. The first two analyses produce almost identical quantitative results, whereas the last approach is able to reveal spatial differences between the maps and also to improve predictions in the agreed high landslide-susceptible area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号