首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water level changes in wells provide a direct measure of the impact of groundwater development at a scale of relevance for management activities. Important information about aquifer dynamics and an aquifer's future is thus often embedded in hydrographs from continuously monitored wells. Interpretation of those hydrographs using methods developed for pumping‐test analyses can provide insights that are difficult to obtain via other means. These insights are demonstrated at two sites in the High Plains aquifer in western Kansas. One site has thin unconfined and confined intervals separated by a thick aquitard. Pumping‐induced responses in the unconfined interval indicate a closed (surrounded by units of relatively low permeability) system that is vulnerable to rapid depletion with continued development. Responses in the confined interval indicate that withdrawals are largely supported by leakage. Given the potential for rapid depletion of the unconfined interval, the probable source of that leakage, it is likely that large‐scale irrigation withdrawals will not be sustainable in the confined interval beyond a decade. A second site has a relatively thick unconfined aquifer with responses that again indicate a closed system. However, unlike the first site, previously unrecognized vertical inflow can be discerned in data from the recovery periods. In years of relatively low withdrawals, this inflow can produce year‐on‐year increases in water levels, an unexpected occurrence in western Kansas. The prevalence of bounded‐aquifer responses at both sites has important ramifications for modeling studies; transmissivity values from pumping tests, for example, must be used cautiously in regional models of such systems.  相似文献   

2.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

3.
Permian evaporite deposits have been extensively dissolved beneath the perimeter of the Southern High Plains in the Texas Panhandle. Hydrologic and geochemical data were collected from six test wells to determine hydrogeochemical processes involved and the source and flow paths of ground water moving in salt-dissolution zones. Geochemical similarities and hydraulic-head relationships indicate that ground water dissolving halite and anhydrite moves downward from aquifers in post-Permian formations and follows flow paths influenced by topography. Holocene salt-dissolution rates probably are lower than Tertiary and Pleistocene rates owing to regional changes in physiography and climate that probably decreased the amount of recharge to salt-dissolution zones. Present as well as palaeohydrologic ground-water velocities and salt-dissolution rates are probably less beneath the Southern High Plains than in adjacent, peripheral salt-dissolution zones because of lower hydraulic conductivities and lower hydraulic-head gradients. Salinities in peripheral salt-dissolution zones are low (67 000 to 95 000 mg L?1) despite high solubility of halite, reflecting relatively open circulation of ground water. In interior salt-dissolution zones beneath the Southern High Plains, ground-water circulation is low and water composition tends to reach halite saturation.  相似文献   

4.
Pope JP  Burbey TJ 《Ground water》2004,42(1):45-58
Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern coastal plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 through 1995 (1.5 mm/year) and 50.2 mm of total compaction at Suffolk from 1982 through 1995 (3.7 mm/year). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds, as well as recoverable compaction and expansion of coarse-grained aquifer units. The calibrated modeling results indicate that nonrecoverable specific storage values decrease with depth and range from 1.5 x 10(-5)/m for aquifer units to 1.5 x 10(-4)/m for confining units and interbeds. The aquifer and Potomac system recoverable specific storage values were all estimated to be 4.5 x 10(-6)/m, while the confining units and interbeds had values of 6.0 x 10(-6)/m. The calibrated vertical hydraulic conductivity values of the confining units and interbeds ranged from 6.6 x 10(-4) m/year to 2.0 x 10(-3) m/year. These parameter values will be useful in future management and modeling of ground water in the Virginia Coastal Plain.  相似文献   

5.
Urban areas in the Lake Victoria (LV) region are experiencing the highest growth rates in Africa. As efforts to meet increasing demand accelerate, integrated water resources management (IWRM) tools provide opportunities for utilities and other stakeholders to develop a planning framework comprehensive enough to include short term (e.g. landuse change), as well as longer term (e.g. climate change) scenarios. This paper presents IWRM models built using the Water Evaluation And Planning (WEAP) decision support system, for three towns in the LV region – Bukoba (Tanzania), Masaka (Uganda), and Kisii (Kenya). Each model was calibrated under current system performance based on site visits, utility reporting and interviews. Projected water supply, demand, revenues and costs were then evaluated against a combination of climate, demographic and infrastructure scenarios up to 2050. Our results show that water supply in all three towns is currently infrastructure limited; achieving existing design capacity could meet most projected demand until 2020s in Masaka beyond which new supply and conservation strategies would be needed. In Bukoba, reducing leakages would provide little performance improvement in the short-term, but doubling capacity would meet all demands until 2050. In Kisii, major infrastructure investment is urgently needed. In Masaka, streamflow simulations show that wetland sources could satisfy all demand until 2050, but at the cost of almost no water downstream of the intake. These models demonstrate the value of IWRM tools for developing water management plans that integrate hydroclimatology-driven supply to demand projections on a single platform.  相似文献   

6.
Defining and managing sustainable yield   总被引:1,自引:0,他引:1  
Maimone M 《Ground water》2004,42(6-7):809-814
Ground water resource management programs are paying increasing attention to the integration of ground water and surface water in the planning process. Many plans, however, show a sophistication in approach and presentation that masks a fundamental weakness in the overall analysis. The plans usually discuss issues of demand and yield, yet never directly address a fundamental issue behind the plan--how to define sustainable yield of an aquifer system. This paper points out a number of considerations that must be addressed in defining sustainable yield in order to make the definition more useful in practical water resource planning studies. These include consideration for the spatial and temporal aspects of the problem, the development of a conceptual water balance, the influence of boundaries and changes in technology on the definition, the need to examine water demand as well as available supply, the need for stakeholder involvement, and the issue of uncertainty in our understanding of the components of the hydrologic system.  相似文献   

7.
A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km3 since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management.  相似文献   

8.
Abstract

Water availability is one of the most important factors for economic development in the Middle East. The Water Evaluation And Planning (WEAP) model was used to assess present and future water demand and supply in Syria till 2050. Nonconventional water resources, climate change, development, industrial growth, regional cooperation, and implementation of new water saving techniques/devices were considered important factors to include in the analysis using the WEAP model. Six scenarios were evaluated depending on the actual situation, climate change, best available technology, advanced technology, regional cooperation, and regional conflict. The results display a vital need for new water resources to balance the unmet water demands. Climate change will have a major effect on Syrian water resources; possible regional conflict will also to a major extent affect water balance. However, regional cooperation and using the best available technology can help in minimizing the gap between supply and demand.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   

9.
Strategies for offsetting seasonal impacts of pumping on a nearby stream   总被引:4,自引:0,他引:4  
Ground water pumping from aquifer systems that are hydraulically connected to streams depletes streamflow. The amplitude and timing of stream depletion depend on the stream depletion factor (SDF(i)) of the pumping wells, which is a function of aquifer hydraulic characteristics and the distance from the wells to the stream. Wells located at different locations, but having the same SDF and the same rate and schedule of pumping, will deplete streamflow equally. Wells with small SDF(i) deplete streamflow approximately synchronously with pumping. Wells with large SDF(i) deplete streamflow at approximately a constant rate throughout the year, regardless of the pumping schedule. For large values of SDF(i), artificial recharge that occurs on a different schedule from pumping can offset streamflow depletion effectively. The requirements are (1) that the pumping and recharge wells both have the same SDF(i) and (2) that the annual total quantities of recharge and pumping be equal. At larger SDF(i) values, it takes longer for pumping to impact streamflow in a wide aquifer than it does in a narrow aquifer. In basins that are closed to further withdrawals because streamflow is fully allocated, water-use changes replace new allocations as the source of water for new developments. Ground water recharge can be managed to offset the impacts of new ground water developments, allowing for changes in the timing and source of withdrawals from a basin without injuring existing users or instream flows.  相似文献   

10.
The state of Texas has implemented a modeling system for assessing the availability and reliability of water resources that consists of a generalized simulation model called the Water Rights Analysis Package (WRAP) and input datasets for the state's 23 river basins. Reservoir/river system management and water allocation practices are simulated using historical naturalized monthly streamflow sequences to represent basin hydrology. Institutional systems for allocating streamflow and reservoir storage resources among numerous water users are considered in detail in evaluating basinwide impacts of water management decisions. The generalized WRAP model is a flexible tool that may be applied to river basins anywhere. The Texas experience in implementing a statewide modeling system illustrates issues that are relevant to water management in many other regions of the world.  相似文献   

11.
Wood WW 《Ground water》2002,40(4):438-447
Study of ground water in the Southern High Plains is central to an understanding of the geomorphology, deposition of economic minerals, and climate change record in the area. Ground water has controlled the course of the Canadian and Pecos rivers that isolated the Southern High Plains from the Great Plains and has contributed significantly to the continuing retreat of the westward escarpment. Evaporative and dissolution processes are responsible for current plateau topography and the development of the signature 20,000 small playa basins and 40 to 50 large saline lake basins in the area. In conjunction with eolian processes, ground water transport controls the mineralogy of commercially valuable mineral deposits and sets up the distribution of fine efflorescent salts that adversely affect water quality. As the water table rises and retreats, lunette and tufa formation provides valuable paleoclimate data for the Southern High Plains. In all these cases, an understanding of ground water processes contributes valuable information to a broad range of geological topics, well beyond traditional interest in water supply and environmental issues.  相似文献   

12.
ABSTRACT

Crete is a Mediterranean, karst-dominated island, characterized by long drought periods. The Karst-SWAT model, combined with 11 climate change scenarios, was run to assess climate change impacts on the island under two set-ups, both using the auto-irrigation function of the model: (1) with water drawn from the shallow or deep aquifer, and (2) with irrigated water derived from an unlimited outside source. The first set-up provided insight into the fluctuation of future irrigation needs, and when compared to the second set-up, enabled quantification of the future water deficit. The Water Exploitation Index was used to describe the spatial variability of future water stress on Crete. A decrease in both surface and karstic spring flows is foreseen, especially after 2060 (24.2 and 16.5%, respectively). Simulated irrigation water demand and water deficit show continuous increase throughout the projection period (2020–2098).  相似文献   

13.
Field-based experiments were designed to investigate the release of naturally occurring, low to moderate (< 50 microg/L) arsenic concentrations to well water in a confined sandstone aquifer in northeastern Wisconsin. Geologic, geochemical, and hydrogeologic data collected from a 115 m2 site demonstrate that arsenic concentrations in ground water are heterogeneous at the scale of the field site, and that the distribution of arsenic in ground water correlates to solid-phase arsenic in aquifer materials. Arsenic concentrations in a test well varied from 1.8 to 22 microg/L during experiments conducted under no, low, and high pumping rates. The quality of ground water consumed from wells under typical domestic water use patterns differs from that of ground water in the aquifer because of reactions that occur within the well. Redox conditions in the well can change rapidly in response to ground water withdrawals. The well borehole is an environment conducive to microbiological growth, and biogeochemical reactions also affect borehole chemistry. While oxidation of sulfide minerals appears to release arsenic to ground water in zones within the aquifer, reduction of arsenic-bearing iron (hydr)oxides is a likely mechanism of arsenic release to water having a long residence time in the well borehole.  相似文献   

14.
In west-central Lower Peninsula of Michigan, population growth and expanded agricultural activities over recent decades have resulted in significant increases in distributed groundwater withdrawals. The growth of the extensive well network and anecdotes of water shortages (dry wells) have raised concerns over the region's groundwater sustainability. We developed an unsteady, three-dimensional (3D) groundwater flow model to describe system dynamics over the last 50 years and evaluate long-term impacts of groundwater use. Simulating this large aquifer system was challenging; the site is characterized by strong, spatially distributed, and statistically nonstationary heterogeneity, making it difficult to avoid over-parameterization using traditional approaches for conceptualizing and calibrating a flow model. Moreover, traditional pumping and water level data were lacking and prohibitively expensive to collect given the large-scale and long-term nature of this study. An integrated, stochastic-deterministic approach was developed to characterize the system and calibrate the flow model through innovative use of high-density water well datasets. This approached allowed (1) implementation of a “zone-based,” nonstationary stochastic approach to conceptualize complex spatial variability using a small set of geologic material types; (2) modeling the spatiotemporal evolution of many water well withdrawals across several decades using sector-based parameterization; and (3) critical analysis of long-term water level changes at different locations in the aquifer system for characterizing the system dynamics and calibrating the model. Results show the approach is reasonably successful in calibrating a complex model for a highly complex site in a way that honors complex distributed heterogeneity and stress configurations.  相似文献   

15.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

16.
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment and local human activities such as surface and ground water withdrawals, land use and energy extraction, and variability and long‐term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. Over time scales ranging from 1 week to 2 years, we find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation. Based on these relationships combined with regional climate projections, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate and chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Equitable allocation of ground water resources is a growing challenge due to both the increasing demand for water and the competing values placed on its use. While scientists can contribute to a technically defensible basis for water resource planning, this framework must be cast in a broader societal and environmental context. Given the complexity and often contentious nature of resource allocation, success requires a process for inclusive and transparent sharing of ideas complemented by tools to structure, quantify, and visualize the collective understanding and data, providing an informed basis of dialogue, exploration, and decision making. Ideally, a process that promotes shared learning leading to cooperative and adaptive planning decisions. While variously named, mediated modeling, group modeling, cooperative modeling, shared vision planning, or computer-mediated collaborative decision making are similar approaches aimed at meeting these objectives. In this paper, we frame "cooperative modeling" in the context of ground water planning and illustrate the process with two brief examples.  相似文献   

19.
Sea water intrusion and remediation in the Upper Floridan Aquifer in South Carolina is simulated using the finite-element model SUTRA developed by the U.S. Geological Survey. A sensitivity analysis of the effect of the hydrogeologic parameters on the sea water recharge and seepage velocities is performed. An increase in confining unit and/or in aquifer conductivity results in an increase of the sea water recharge. An increase in aquifer porosity results in a decrease of the sea water recharge. Among the three remedial techniques simulated—reduced aquifer withdrawals, an injection well, and a combined injection and capture well—the reduced aquifer withdrawals and injection well are the best methods for preventing sea water intrusion.  相似文献   

20.
Abstract

This article addresses the critical need for a better quantitative understanding of how water resources from the Hérault River catchment in France have been influenced by climate variability and the increasing pressure of human activity over the last 50 years. A method is proposed for assessing the relative impacts of climate and growing water demand on the decrease in discharge observed at various gauging stations in the periods 1961–1980 and 1981–2010. An annual water balance at the basin scale was calculated first, taking into account precipitation, actual evapotranspiration, water withdrawals and water discharge. Next, the evolution of the seasonal variability in hydroclimatic conditions and water withdrawals was studied. The catchment was then divided into zones according to the main geographical characteristics to investigate the heterogeneity of the climatic and human dynamics. This delimitation took into account the distribution of climate, topography, lithology, land cover and water uses, as well as the availability of discharge series. At the area scale, annual water balances were calculated to understand the internal changes that occurred in the catchment between both past periods. The decrease in runoff can be explained by the decrease in winter precipitation in the upstream areas and by the increase during summer in both water withdrawals and evapotranspiration in the downstream areas, mainly due to the increase in temperature. Thus, water stress increased in summer by 35%. This work is the first step of a larger research project to assess possible future changes in the capacity to satisfy water demand in the Hérault River catchment, using a model that combines hydrological processes and water demand.
Editor Z.W. Kundzewicz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号