首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodegraded oils are widely distributed in the Liaohe basin, China. In order to develop effective oil-source correlation tools specifically for the biodegraded oils, carbon isotopic compositions of individual n-alkanes from crude oils and their asphaltene pyrolysates have been determined using the gas chromatography–isotope ratio mass spectrometry technique. No significant fractionation in the stable carbon isotopic ratios of n-alkanes in the pyrolysates of oil asphaltenes was found for anhydrous pyrolysis carried out at temperatures below 340°C. This suggests that the stable carbon isotopic distribution of n-alkanes (particularly in the C16–C29 range) in the asphaltene pyrolysates can be used as a correlation tool for severely biodegraded oils from the Liaohe Basin. Comparison of the n-alkane isotopic compositions of the oils with those of asphaltene pyrolysates shows that this is a viable method for the differentiation of organic facies variation and post-generation alterations.  相似文献   

2.
Nine rock samples from three Jurassic stratigraphic units of a shallow core from NW Germany were analyzed by pyrolysis-gas chromatography. The units contain a mixed Type-II/III kerogen (Dogger-α), a hydrogen-rich Type-II kerogen (Lias-), and a hydrogen-poor Type-III kerogen (Lias-δ). All of the kerogen was immature (Ro = 0.5%). Two sets of kerogen concentrates (“AD”: HCl/HF followed by a density separation, and “A”: only acid treatment) prepared from the rock samples were also analyzed to make a detailed comparison of the pyrolysates of rock and corresponding kerogen-concentrates.Hydrogen-index (HI) values of the kerogen concentrates prepared from organic-carbon poor rock were nearly 200% higher than HI values of the rock samples. Changes in HI were minimal for the samples containing Type-II kerogen. The A and AD samples from the Corg-poor rock yielded pyrolysates with n-alkane series of very different molecular lengths. Pyrograms of the rock samples had n-alkane series extending to n-C14; the chromatograms of the A samples reached the n-C14-nC20 range. The AD samples from Corg-poor rock and all three sample types from the Corg-rich rock had n-alkane series up to n-C29. The benzene/hexane and toluene/heptane ratios for the Corg-poor rock and A samples were far higher than for the AD samples, which had ratios similar to those of all three sample types from the Corg-rich rocks. These results indicate that choice of kerogen preparation method is critical when Corg-poor samples are analyzed.  相似文献   

3.
This study investigates the extent of post-depositional alteration of δD values of n-alkyl lipids, isoprenoids, and kerogen isolated from a continuous 450 m core that covers the transition from thermally immature to early mature sediments in the lacustrine Kissenda Formation, Lower Cretaceous, Gabon Basin. Large variations in δD values (up to 40‰ for nC17 and up to 30‰ for nC29 alkanes as well as up to 10‰ for kerogen) in closely spaced samples are evident throughout the core and remain preserved even at the bottom of the section. δD values of individual n-alkanes show a slight overall D-enrichment with depth, and a general trend of increasing δD values with increasing n-alkane chain length characterizes all samples, particularly in those below 600 m depth. Hydrogen isotopic compositions of kerogen samples overlap with those of n-alkanes throughout the section. δD values of pristane and phytane are more negative than those of nC17 alkane by as much as 120‰ at shallow depths but increase dramatically and approach δD values of nC17 alkane in the samples closest to the oil window. Integration of analytical and computational results indicates that: (1) n-alkanes and isoprenoids have the potential to preserve the original biological signal before the onset of oil generation; (2) isomeric and structural rearrangements taking place at the beginning stages of oil generation do not influence significantly the δD values of n-alkanes and kerogen. However, these processes have a major effect on the isotopic composition of isoprenoids, causing isotopic D-enrichment up to 90‰.  相似文献   

4.
The kerogen of a sample of Estonian Kukersite (Ordovician) was examined by spectroscopic (solid state 13C NMR, FTIR) and pyrolytic (“off-line”, flash) methods. This revealed an important contribution of long, linear alkyl chains in Kukersite kerogen. The hydrocarbons formed upon pyrolysis are dominated by n-alkanes and n-alk-1-enes and probably reflect a major contribution of selectivity preserved, highly aliphatic, resistant biomacromolecules from the outer cell walls of Gloeocapsomorpha prisca. This is consistent with the abundant presence of this fossilized organism in Kukersite kerogen. In addition high amounts of phenolic compounds were identified in the pyrolysates. Series of non-methylated, mono-, di- and trimethylated 3-n-alkylphenols, 5-n-alkyl-1,3-benzenediols and n-alkylhydroxybenzofurans were identified. All series of phenolic compounds contain long (up to C19), linear alkyl side-chains. Kukersite kerogen is, therefore, an aliphatic type II/I kerogen, despite the abundance of free phenolic moieties. This study shows that phenol-derived moieties are not necessarily associated with higher plant-derived organic matter.The flash pyrolysate of Kukersite kerogen was also compared with that of the kerogen of the Guttenberg Oil Rock (Ordovician) which is also composed of accumulations of fossilized G. prisca. Similarities in the distributions of hydrocarbons and sulphur compounds were noted, especially for the C1–C6 alkylbenzene and alkylthiophene distributions. However, no phenolic compounds were detected in the flash pyrolysate of the Guttenberg kerogen. Possible explanations for the observed similarities and differences are discussed.  相似文献   

5.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

6.
The aliphatic hydrocarbon composition (acyclic isoprenoids, hopanoids and steroids) of oils from the most productive fields in the southern geological Province of Cuba have been studied. This province is defined by its position with respect to the Cretaceous overthrust belt generated during the formation of oceanic crust along the axis of the proto-Caribbean Basin. The relative abundances of 18α(H)-22,29,30-trisnorneohopane, gammacerane and diasteranes suggest that Pina oils are related to the carbonate oils from the Placetas Unit in the northern province (low Ts/(Ts+Tm) and C27,29 rr/(rr+sd) ratios). The Cristales and Jatibonico oils exhibit some differentiating features such as higher Ts/(Ts+Tm) and absence of gammacerane. The oils from this province do not exhibit significant differences in either hopane, C32 22S/(S+R) and C30 αβ/(αβ+βα), or sterane, C29 αα 20S/(S+R), maturity ratios. However, the relative content of 5α(H),14β(H),17β(H)-cholestanes (C29 ββ/(ββ+αα) ratio) indicates that Pina oils are more mature than Cristales and Jatibonico oils. Several of these oils (Cristales, Jatibonico and Pina 26) are heavily biodegraded, lacking n-alkanes, norpristane, pristane and phytane (the two former oils do not contain acyclic isoprenoid hydrocarbons). Other biodegradation products, the 25-norhopanes, are found in all the oils. Their occurrence is probably due to mixing of severely biodegraded oil residues with undegraded crude oils during accumulation in the reservoir.  相似文献   

7.
This new study was carried out in order to accurately characterize the geochemical pattern of Ousselat organic-rich facies from the Ypresian basin in central-northern Tunisia. It has been found that the organic matter is located towards the end of diagenesis/beginning of catagenesis. This assumption is supported by the relative low T max values (429–439°C) and by steranes maturity parameters such as C29 αα 20S/(20S + 20R), and C29 ββ/(ββ + αα). High HI values and the abundance of saturates (1–83%) compared to aromatics (2–27%) are unequivocal evidence of type-II organic matter as indicated by a high abundance of cholestane and the predominance of short-chain n-alkanes centred at n-C18 and at n-C20. Total organic carbon (TOC) content and petroleum potential values suggest that the Ypresian period corresponds to an anoxic event which led to the accumulation and preservation of large quantities of organic matter with high primary production. Due to their geochemical characteristics, the Lower Eocene facies represent a new potential source rocks in central-northern Tunisia.  相似文献   

8.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

9.
Biomarker distributions in a suite of asphaltenes and kerogens have been analysed by flash pyrolysis directly coupled to a GCMS system. Attention has been focussed on biomarkers of the sterane and triterpane types. The sample suite under investigation consists of sediments with different kerogen types and some crude oils. Biomarker distributions in the pyrolysates have been compared with the “free” biomarkers in the corresponding saturated hydrocarbon fractions.The analyses show significant differences between the distributions of the free biomarkers and those in the pyrolysates. The latter have lower amounts of steranes while diasteranes are absent or present at low concentrations only. In the triterpane traces a shift of maximum intensity from C30 (free compounds) to C27/C29 is observed. Furthermore, the pyrolysates contain a set of triterpenes (not present among the free compounds), and there is a selective loss of “non-regular” triterpanes that are present in the saturated hydrocarbon fractions. The observed differences between pyrolysates and free hydrocarbons can be explained partly by the processes occurring during pyrolysis such as bond rupture and subsequent stabilisation of primary pyrolysis products. To a certain extent these differences also show that maturation processes occurring in sediments have effects on free biomarker molecules different from those on molecules that are enclosed in a macromolecular matrix (kerogen or asphaltenes).Differences between biomarker distributions of asphaltene and kerogen pyrolysates are relatively small. A comparison with the pyrolysates from extracted whole sediments suggests that these differences are mainly caused by interactions between the organic material and the mineral matrix during pyrolysis.Oil asphaltenes behave differently from sediment asphaltenes as their pyrolysates are more similar to the corresponding saturated hydrocarbon fractions, i.e. the differences described above are observed to a much smaller extent. This different behaviour appears to be the result of coprecipitation of a part of the maltene fraction with the oil asphaltenes.  相似文献   

10.
Micro-scale sealed vessel (MSSV) pyrolysis experiments have been conducted at temperatures of 150, 200, 250, 300, 330 and 350°C for various times on a thermally immature Type II-S kerogen from the Maastrichtian Jurf ed Darawish Oil Shale (Jordan) in order to study the origin of low-molecular-weight (LMW) alkylthiophenes. These experiments indicated that the LMW alkylthiophenes usually encountered in the flash pyrolysates of sulphur-rich kerogens are also produced at much lower pyrolysis temperatures (i.e. as low as 150°C) as the major (apart from hydrogen sulfide) sulphur-containing pyrolysis products. MSSV pyrolysis of a long-chain alkylthiophene and an alkylbenzene indicated that at 300°C for 72 h no β-cleavage leading to generation of LMW alkylated thiophenes and benzene occurs. In combination with the substantial production of LMW alkylthiophenes with a linear carbon skeleton at these conditions, this indicated that these thiophenes are predominantly formed by thermal degradation of multiple (poly)sulfide-bound linear C5–C7 skeletons, which probably mainly originate from sulphurisation of carbohydrates during early diagenesis. LMW alkylthiophenes with linear carbon skeletons seem to be unstable at MSSV pyrolysis temperatures of ≥330°C either due to thermal degradation or to methyl transfer reactions. LMW alkylthiophenes with a branched carbon skeleton most likely derive from both multiple (poly)sulfide-bound branched C5–C7 skeletons and alkylthiophene units present in the kerogen.  相似文献   

11.
Anhydrous non-isothermal heating experiments were conducted under controlled compressive stress on cylindrical plugs of six oil shales from Permian through Eocene age. The objective of this study was to compare the distribution of acyclic paraffins in initial, residual and expelled organic matter and to highlight causes of compositional differences resulting from expulsion. Pristane generation from kerogen is highest in the Eocene Messel shale and affects the pristane / phytane (pr / ph) ratio commonly used as a redox proxy. The isoprenoid to n-alkane ratios (pr / n-C17, ph / n-C18) decrease during generation and are lowest in the residual bitumen due to preferential generation and retention of n-alkanes. The n-alkane distribution shows that only lacustrine shales produce high wax oils. Evaporative fractionation leads to loss of n-alkanes up to n-C20 with boiling points below 350 °C. This demonstrates that lacustrine and marine shales may lead to accumulation of low wax oils due to evaporative fractionation after expulsion.  相似文献   

12.
The variations in the organic matter quantity and quality were studied with respect to the mineral composition of the carbonate sequences accumulated on a gentle slope (Zl-1 well) and at the toe of the slope (Rzt-1 well) located between a Late Triassic carbonate platform and a backplatform basin. Parallel variations observed in mineral composition and organic geochemical features of the successions appeared to be controlled by the change in climate and by sea-level fluctuations. The repetitive sea-level changes resulted in a variation in the carbonate-rich basin facies and in the mineralogically heterogenous slope and toe-of-slope ones. According to Rock Eval pyrolysis, organic petrography and carbon isotope ratios, the immature organic matter is of predominantly marine origin and composed of mainly liptinites in both of the studied boreholes. The results of the GC and GC/MS analyses of the saturated hydrocarbon fractions of bitumens together with the composition of kerogen pyrolysates reveal a predominant algal input with a minor variable bacterial and subordinate terrestrial contribution for the Rzt-1 borehole. In the Zl-1 borehole a significantly higher proportion of the bacterial biomass contributed to the organic precursors. The δ13C values and the composition of the kerogen pyrolysates together with the results of the maceral analysis and GC data suggest a relatively higher, but moderate, higher plant derived contribution in the slope facies and at the top of the toe-of-slope facies. The elementary composition of kerogens and Rock Eval data display type II-S kerogen in the basin and the slope facies, and type I-II-S one in the toe-of-slope facies. Variations in the hydrogen content of the organic matter mainly reflect variations in the preservation conditions and in primary productivity. The presence of the 2,6,10,15,19-pentamethyleicosane and the extremely low pristane/phytane ratios indicate a relatively high methanogenic bacterial activity and strongly anoxic depositional conditions in the Rzt-1 well, especially in two most organic-rich toe-of-slope facies.  相似文献   

13.
Abundant aryl isoprenoids have been detected in source rock extracts from the 25-65 Ma saline lacustrine formations in the western Qaidam Basin, NW China. Identification was based mainly on comparison of mass spectra and gas chromatographic behaviour with literature data. Two pseudohomologous series in the range C13-C40 were assigned as 2,3,6- and 2,3,4-trimethyl monoaryl isoprenoids. The C40 2,3,4-trimethylaryl isoprenoid, okenane, was the most abundant component of the series, while its C40 2,3,6-trimethylaryl isomer, chlorobactane, was present in low abundance. Two C40 monoaromatic isoprenoids with a cyclohexyl ring were tentatively assigned as β-isorenieratane and β-renierapurpurane. One C40 diaryl isoprenoid was identified as isorenieratane. Identification of okenane, chlorobactane and isorenieratane was confirmed by co-elution experiments using synthetic standards. In addition, two novel series of aryl isoprenoids in the C12-C39 range were tentatively assigned as 2,6- and 2,3-dimethylaryl isoprenoids. The C39 2,3-dimethylaryl isoprenoid homologue was the most abundant component of the series, while the C39 2,6-dimethylaryl isomer was only present in low abundance. Two C39 monoaromatic bicyclic compounds were tentatively assigned as 2,6- and 2,3-dimethylaryl isoprenoids with a terminal cyclohexyl ring. Furthermore, a minor C38 component was tentatively assigned as a diaryl isoprenoid with a 2,3-/2,3-dimethyl substitution pattern. These dimethylaryl isoprenoids seem to be formed by demethylation of their parent trimethylaryl isoprenoid counterparts, the location of the demethylated position being exclusively at C-3, C-4 or C-6 of the aromatic ring. This specificity points to a biologically-mediated process (as opposed to an abiotic, maturity-related transformation) that needs to be further investigated.  相似文献   

14.
Immature Torbanite and the resistant biopolymer (PRB A) isolated from extant B. braunii were previously compared using bulk spectroscopic methods. In the present work, analysis of 400°C pyrolysis products and pyrolysis residues provided further information on their structure and possible relationships. It appears that such polymers are based upon unbranched, saturated, cross-linked hydrocarbon chains up to C31. In addition to these bridging structures, a substantial part of the alkyl chains is singly bound, as esters of unbranched, saturated or cis unsaturated, even fatty acids. These esters are sterically protected, against chemical degradations, by the network of the bioand geopolymer.Quantitative and qualitative observations derived from 400°C pyrolysis confirm that the chemical structure of PRB A and immature Torbanite are closely related. The pyrolysis residues show a similar evolution and numerous common features are noted, with respect to the nature and the distribution of the major constituents of the pyrolysates (hydrocarbons and fatty acids). Accordingly, Botryococcus provides what seems to be the first example of a close structural relationship between a biopolymer produced in large amounts by an extant alga and the geopolymer of an immature kerogen. The essential role of PRB A in Torbanite formation is ascertained. Moreover, it is found that the resistant biopolymer does not undergo important structural changes during the first stages of diagenesis. Thus, owing to steric protection, the esters of immature Torbanite show a distribution quite close to the one of PRB A esters, with exclusively even constituents and a large contribution of unsaturated acids.Recent observations pointed to the possible genesis of some algal kerogens principally by selective preservation of resistant macromolecules. Such a type of formation is clearly predominant in Torbanite, where the bulk of the fossil organic matter corresponds to a selectively preserved and weakly altered, resistant biopolymer, while incorporation of lipids into the kerogen structure during diagenesis seems to play a minor role.  相似文献   

15.
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomicHC ratio and the lowest atomic NC ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C16 and C18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic HC ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.  相似文献   

16.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

17.
Light hydrocarbons in subsurface sediments   总被引:1,自引:0,他引:1  
The major features and numerous compositional details of the indigenous C2–C7 hydrocarbon suites of argillaceous sediments are systematically temperature dependent. The relative concentrations of alicyclic compounds exhibit a consistent maximum at subsurface temperatures close to 170°F (77°C) without regard to the chemical nature of the bulk of the kerogen, whether rich or poor in hydrogen, though this strongly affects the specific yield. A continuous increase in relative alkane content follows at higher temperatures. Indices of paraffinicity may be devised. One such, termed the ‘heptane value’ (essentially the percentage of n-heptane in the b.p. range 80.7–100.9°C), possesses a linear association with temperature, provides an index of catagenesis, and frequently provides a means of appraising paleotemperatures. Regressions of heptane value on temperature are compared in two composite stratigraphic sections dominated by kerogens representing two extremes of composition. The regression coefficients differ by 7%. Yields of light hydrocarbons increase exponentially in these sections by more than three orders of magnitude along sub-parallel, temperature-dependent curves. These similarities infer universally similar generating reactions and compositionally similar suites of light hydrocarbons at given subsurface temperatures, regardless of kerogen type, particularly for sections which underwent burial and heating during the Tertiary period.  相似文献   

18.
A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and Recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.  相似文献   

19.
Young kerogens isolated from seven freshwater lakes, six river mouths and four marine surface sediments were subjected to pyrolysis in vacuo. Their pyrolysates were trapped and separated subsequently for determination of hydrocarbons, fatty acids and alcohols. The abundances, carbon number distributions of long (C12) polymethylene chain lipid compounds and relative abundances of pristenes are proposed as possible indices applicable to discrimination between young kerogens from freshwater lacustrine and marine sediments. Some oil-shale kerogens of Eocene and Permian age were pyrolyzed in the same way, where the chain-length distributions of the pyrolysis products showed similar trends as those observed for the pyrolysis of young kerogens.  相似文献   

20.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号