首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   

2.
We present here a summary review of the work of Russian scientists, primarily Gus'kova and Pochtarev, on the magnetism of meteorites. They have measured the initial natural remanent magnetization and the magnetic susceptibility in more than 900 meteorite samples from collections throughout the Soviet Union. More sophisticated studies, involving both thermal and alternating field demagnetization experiments, were also conducted on a few samples. Meteorites almost invariably retain evidence of ancient magnetic fields in their pre-terrestrial history  相似文献   

3.
Abstract– Pyrrhotite from suevite of the 35 Ma Chesapeake Bay impact structure (CBIS) shows a shock metamorphism and we report on several mineralogical and magnetic features. Pyrrhotite shows strong brittle deformation with a high density of stacking faults, twinning parallel to the hexagonal (001) planes and average fault distances in the order of 10 nm. Although the determination of a superstructure was not possible due to the lattice defects, the reflections of the NiAs subcell, which is typical of all pyrrhotite modifications, were clearly detected. This phase is ferrimagnetic with a Curie temperature (TC) between 350 and 365 °C, and suevite with this phase does not show the 34 K transition. The most peculiar feature is the low metal/sulfur ratio of 0.81, which indicates a distinctly higher vacancy concentration than for 4C pyrrhotite and a composition close to smythite (Fe9S11). This phase carries a stable natural remanent magnetization and is relatively hard magnetic. Steep inclinations of the natural remanent magnetization vector, however, suggest that this phase has been remagnetized by the drilling process. A possible explanation is the magnetic domain size of faultless areas of about 10 nm in diameter, which is at the lower limit of the single domain size near the threshold, below which superparamagnetic behavior occurs. The low thermal stability of this phase excludes postshock heating above 300 °C for the suevite of the CBIS. Our results imply that the iron‐deficient pyrrhotite is produced by shock metamorphism, although an iron loss due to shock has never been reported before for pyrrhotite.  相似文献   

4.
Abstract— Demagnetized samples of cobalt precipitates in a copper matrix were shocked to 5, 10, and 20 GPa in a weak magnetic field of 7.7 μT to elucidate the origins of the natural remanent magnetization of meteorites and the magnetic anomalies of impact craters on the moon and Mars. The samples placed in the target acquired shock remanent magnetization (SRM) whose intensity increased up to 21.3 times compared with the demagnetized state, but SRM intensity and shock intensity were not correlated. The SRM direction was in most cases approximately perpendicular to the shock direction. The samples placed 4.8 mm from the impacted surface did not acquire significant magnetization, suggesting no plasma‐induced remanent magnetization (PIRM) up to 20 GPa. When the samples were divided into 8 sub‐samples, the SRM intensities of sub‐samples increased up to 40 times compared with bulk ones and their directions were scattered. Higher coercive force grains were magnetized perpendicular to the shock direction for shocks of 5 and 10 GPa, but at 20 GPa the directions were less systematically oriented. These results suggest that the proposed plasma‐induced magnetization of impactites should be reconsidered.  相似文献   

5.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

6.
Three small samples of the Odessa, Texas iron meteorite, two surrounded by sandy soil, were introduced into a hydrogen plasma. The soil was effectively cleansed from the iron surfaces, being substantially destroyed with only a fine dust remaining. The appearance of the iron meteorite samples indicated that the terrestrial oxidation was reversed, probably to magnetite, Fe3O4, and metallic iron.  相似文献   

7.
As part of our study of the larger-scale remanent magnetic field of the Moon, we have examined the effects of cratering in an otherwise spherically symmetrical shell magnetized by a concentric dipolar magnetic fieldH o to an intensity of magnetizationc H o, wherec is a constant. In our initial model, we assume that the material excavated from the craters is distributed with random orientation and thus does not contribute to the remanent dipole momentM g . We further assume that the mare fill does not contribute significantly toM g . We choose the magnetizing dipole momentM o and the constantc such that the magnitude of the productcH o ≃ 3 × 10−4Г at the outer surface of the shell in the equatorial plane of the dipole. This value of the intensity of remanent magnetization was chosen to be within the range 10−7−10−3Г’; the intensities of thermo-remanent magnetization exhibited by Apollo samples. Finally, we use the locations and diameters of the 10 largest craters on the Moon and the depth-to-diameter ratios of Pike’s formulation to model approximately the excavation of the magnetized shell. The remanent dipole momentM g was calculated for each of three orthogonal orientations of the magnetizing dipoleM o. The three magnitudes ofM g fall in the range 4 × 1018−1 × 1019Г cm3 which is close to the upper limit of 1019Г cm3 estimated forM g from the field measurements obtained with the Apollo subsatellites. Further, the distribution of the craters is such as to produce a significant transverse component ofM g with acute angles between the spin axis andM g in the range 51°–77°.  相似文献   

8.
Lunar rock magnetism   总被引:2,自引:0,他引:2  
The relationship between the magnetization and temperature in a high constant magnetic field for a temperature range between 5 K and 1100 K was examined for Apollo 11, 12 and 14 lunar materials. The average value of Curie point temperature is (768.2 ± 3.5)°C for the lunar igneous rocks and (762.5 ± 3.4)°C for the lunar fines and breccias. A tentative conclusion about the ferromagnetic substance in the lunar materials would be that Fe is absolutely dominant with a slight association of Ni and Co, and probably Si also, in the lunar native irons.The antiferromagnetic phase of ilmenite and the paramagnetic phase of pyroxenes are considerably abundant in all lunar materials. However, a discrepancy of observed magnetization from a simulated value based on known magnetic elements for the temperature range between 10 and 40 K suggests that pyroxene phase represented by (M x Fe1-x ) SiO3 (whereM = Ca2+, Mg2+, etc and 0 x 1/4) also may behave antiferromagnetically.Magnetic hysteresis curves are obtained at 5 K and 300 K, and the viscous magnetic properties also are examined for a number of lunar materials. The superparamagnetically viscous magnetization has been experimentally proven as due to fine grains of metallic iron less than 200 Å in mean diameter. The viscous magnetization is dominant in the lunar fines and breccias which is classified into Type II, while it is much smaller than the stable magnetic component in lunar igneous rocks (Type I). The superparamagnetically fine particles of metallic iron are mostly blocked at 5 K in temperature; thus coercive force (H c ) and saturation remanent magnetization (I R ) become much large at 5 K as compared with the corresponding values at 300 K.Strongly impact-metamorphosed parts of lunar breccias have an extremely stable NRM which could be attributed to TRM. NRM of the lunar igneous rocks and majority of breccias (or clastic rocks) are intermediately stable, but their stability is considerably higher than that of IRM of the same intensity. This result may imply that some mechanism which causes an appreciable magnitude of NRM and the higher stability, such as the shock effect, may take place on the lunar surface in addition to TRM mechanism for special cases.A particular igneous rock (Sample 14053) is found to have an unusually strong magnetism owing to a high content of metallic iron (about 1 weight percent), and its NRM amounts to 2 × 10–3 emu/g. The abundance of such highly magnetic rocks is not known as yet but it seems that the observed magnetic anomalies on the lunar surface could be related to such highly magnetized rock masses.  相似文献   

9.
Abstract— Due to the effects of erosion, tectonism and burial, impact structures are often obscured or destroyed. Geophysical methods are increasingly being used in detecting the signatures of impact structures. While gravity lows associated with impact structures are well understood, associated magnetic anomaly lows are not. In this study, drill cores from three Canadian impact structures were analyzed for rock magnetic properties and mineralogy, in order to explain the magnetic anomaly lows associated with these structures. Samples from the drill cores were cut and measured for anisotropy of magnetic susceptibility (AMS) and natural remanent magnetization (NRM) parameters. Drill cores from the twin impact craters of the Clearwater structure exhibited different NRM characteristics, and samples from their respective drill cores were subject to demagnetization by alternating field and thermal techniques. The difference noted in their NRM characteristics was attributed to the acquisition of a viscous remanent magnetization (VRM) at depth in Clearwater East. At all three structures, both magnetic susceptibilities and remanent magnetizations are well below regional values in impact generated breccias, melt rocks, shocked crystalline rocks, and in postimpact sedimentary infill. The processes of brecciation, alteration, shock, and infill by nonmagnetic sediments contribute to the development of the magnetic lows. However, a significant contribution to the observed magnetic anomalies was found, by first-order forward modelling, to arise from basement rocks beneath the impact structures. This zone of reduced magnetization may be caused by the partial demagnetization of magnetite by the impact-induced transient stress wave traveling away from the point of impact.  相似文献   

10.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   

11.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

12.
In 1914, in Morasko near Poznań, a 77.5 kg iron meteorite was found. Later there were additional findings. In 1955 seven crater-like structures, situated in the neighborhood of the meteorite finds, were identified. Until now it has been doubtful whether the iron meteorites and the craters belong together. New examinations by the author confirm beyond any doubt that the meteorites and the craters were caused by the same event.  相似文献   

13.
Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10?3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.  相似文献   

14.
One of the typical magnetic characteristics of lunar materials is the composition of their ferromagnetic constituent. Lunar breccias often contain kamacite (less than 7 weight per cent of Ni content) as well as almost pure metallic iron. Metallic ferromagnetics in most igneous rocks are almost pure iron, but the kamacite phase also has been found in some Apollo 15 igneous rocks. It seems likely therefore the metallic ferromagnetics in the lunar crust are more or less similar to those in chondrites.Another typical magnetic characteristic of lunar materials is the presence of a considerable amount of superparamagnetically fine particles of metallic iron. A higher relative content of such fine iron particles results in a higher value of the ratio of magnetic susceptibility (o) to saturation magnetization (I s), a smaller ratio of the coercive force (H c) to remanence coercive force (H RC), and an extremely higher ratio of the viscous component (I v) to the stable one (I s) of the remanent magnetization.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

15.
The parent body of the Farmington meteorite experienced sufficient heating, probably from shock accompanying a major collision occurring at 520 × 106 years ago, to erase the record of any magnetization acquired prior to that event. Therefore, the observed magnetization in the Farmington meteorite must have been acquired after the collision. Shock-produced magnetization is unlikely because of the finite cooling time indicated by the burial depth of ≥ several meters. The possibility of shock or irradiation-produced magnetizations should be studied experimentally, even though neither appears likely to have produced the magnetic field which produced the magnetization in the parent body of the Farmington meteorite.  相似文献   

16.
Abstract— The magnetic properties of samples of seven Martian meteorites (EET 79001, Zagami, Nakhla, Lafayette, Governador Valadares, Chassigny and ALH 84001) have been investigated. All possess a weak, very stable primary natural remanent magnetization (NRM), and some have less stable secondary components. In some cases, the latter are associated with magnetic contamination of the samples, imparted since their recovery, and with viscous magnetization, acquired during exposure of the meteorites to the geomagnetic field since they fell. The magnetic properties are carried by a small content (<1%) of titanomagnetite and, in ALH 84001, possibly by magnetite as well. The most likely source of the primary NRM is a thermoremanent magnetization acquired when the meteorite material last cooled from a high temperature in the presence of a magnetic field. Current evidence is that this was 1.3 Ga ago for the nakhlites and Chassigny and 180 Ma for shergottites: the time of the last relevant cooling of ALH 84001 is not presently known. Preliminary estimates of the strength of the magnetizing field are in the range 0.5–5 üT, which is at least an order of magnitude greater than the present field. It is tentatively concluded that the magnetic field was generated by a dynamo process in a Martian core with appropriate structure and properties.  相似文献   

17.
Abstract— Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled as a result of the Chicxulub Scientific Drilling Project (CSDP), has been analyzed to investigate the relationship between opaque mineralogy and rock magnetic properties. Twenty one samples of suevite recovered from the depth range 818–894 m are generally paramagnetic, with an average susceptibility of 2000 times 10?6 SI and have weak remanent magnetization intensities (average 0.1 A/m). The predominant magnetic phase is secondary magnetite formed as a result of low temperature (<150 °C) alteration. It occurs in a variety of forms, including vesicle infillings associated with quartz and clay minerals and fine aggregates between plagioclase/diopside laths in the melt. Exceptional magnetic properties are found in a basement clast (metamorphosed quartz gabbro), which has a susceptibility of >45000 times 10?6 SI and a remanent magnetization of 77.5 A/m. Magnetic mafic basement clasts are a common component in the Yax‐1 impactite sequence. The high susceptibility and remanence in the mafic basement clasts are caused by the replacement of amphiboles and pyroxenes by an assemblage with fine <1 μm magnetite, ilmenite, K‐feldspar, and stilpnomelane. Replacement of the mafic minerals by the magnetic alteration assemblage occurred before impact. Similar alteration mechanisms, if operative within the melt sheet, could explain the presence of the high amplitude magnetic anomalies observed at Chicxulub.  相似文献   

18.
Abstract— Yamato 000593, a nakhlite, was analyzed in terms of its magnetic record and magnetomineralogy. The natural remanent magnetization (NRM: 3.55–6.07 times 10?5 Am2/kg) was thermally demagnetized at ~320 °C, and it was unstable against alternating field demagnetization. Based on analyses of thermomagnetic curves, the temperature dependence of hysteresis parameters, and microscopic observations, the magnetic minerals mainly consist of magnetite (0.68 wt% of the sample, including ~5% Fe2TiO4) of less than 100 μm in size, associated with minor amounts of monoclinic pyrrhotite (<0.069 wt% of the sample) and goethite. Thermal demagnetization of NRM at ~330 °C is explained due to an offset of magnetization of antipodal NRM components of magnetite, whereas it is not due to a pyrrhotite Curie point. Large magnetite grains show exsolution texture with ilmenite laths, and are cut by silicate (including goethite) veins that formed along cracks. Numerous single‐domain (SD) and pseudo‐single‐domain (PSD) magnetite grains are scattered in the mesostasis and adjacent olivine grains. Moderate coercive forces of HC = 6.8 mT and HRC = 31.1 mT suggest that Yamato 000593 is fundamentally able to carry a stable NRM; however, NRM was found to be unstable. Accordingly, the meteorite was possibly crystallized at 1.3 Ga under an extremely weak or absent magnetic field, or was demagnetized by impact shock at 12 Ma (ejection age) on Mars. This finding differs from the results of previous paleomagnetic studies of SNC (shergottites, nakhlites, chassignites, and orthopyroxenite) Martian meteorites. The significant dipole magnetic field resulting from the molten metallic core was probably absent during the Amazonian Epoch (after 1.8 Ga) on Mars.  相似文献   

19.
The magnetochemical synthesis, as presented, derives from an integration of the magnetic property systematics developed with corresponding bulk chemistry and petrology, and the results of mixing and reduction responses which feature in the production of the lunar regolith. Magnetochemical properties of the lunar soils are correlated with the Al/Si ratio and telescope spectral reflectivity curves. Magnetochemical diagrams utilizingχ p(paramagnetic susceptibility ? FeO) andI S(saturation magnetization ? Fe metal) serve to classify lunar samples, indicate the extent of mixing, and demonstrate that although reduction does take place in production of the regolith, the role of mixing is quite significant. The relative metal size distribution and magnetic stability for various rock types and soils of varying Al/Si values are reflected in theR I(ratio of saturation isothermal remanence-I R, to saturation magnetization -I S) vsR H(ratio of remanent coercive force -H R, to coercive force -H C) plot. All magnetic hysteresis loop parameters considered vary systematically according to the Al/Si values. All Apollo landing sites have distinct telescope curves correlated with petrology, chemistry, Al/Si values, and magnetic properties. Magnetic properties of sites not visited can now be reasonably estimated based on telescope reflectivity curves and orbital geochemical experiments.  相似文献   

20.
Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T‐Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n‐alkanes being submitted to high‐frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid‐state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high‐resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation–recombination rates of organic fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号