首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Microchondrules with apparent diameters of 2 to 150 μm are found in a black carbon—bearing inclusion in Mezö-Madaras. Some are homogeneous (glassy or micro-crystalline) others show two phases: mainly silica and a pyroxene-rich glass. The bulk chemical composition of the inclusion is related to the host-chondrite in which silica-pyroxene chondrules are ubiquitous. Small black lumps of the same kind are dispersed in bulk Mezö-Madaras. This L-related carbon-bearing material may represent a new specimen of C-rich ordinary chondrite.  相似文献   

2.
Abstract Merrihueite (K,Na)2(Fe, Mg)5Si12O30 (na < 0.5, fe > 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezö-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg, Fe)5Si12O30 (na > 0.5, fe < 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We describe silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezö-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezö-Madaras fill the compositional gap between previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezö-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebula that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and ferrosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.  相似文献   

3.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

4.
Abstract— We examine the occurrences, textures, and compositional patterns of spinels in the olivine‐phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET‐A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the Iherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel‐olivine‐pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr‐Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvöspinel. Ulvöspinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvöspinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvöspinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel‐olivine‐pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest‐Cr#, lowest‐fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low‐Ca pyroxene. Assemblages representing the onset of ulvöspinel crystallization consist of the lowest‐Ti ulvöspinel, the most magnesian olivine in which ulvöspinel occurs as inclusions, and equilibrium low‐Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (?QFM ‐3.8), to EET‐A (QFM ‐2.8) and ALH A77005 (QFM ‐2.6), to NWA 1110 (QFM ‐1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET‐A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non‐buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.  相似文献   

5.
Abstract— Mössbauer spectroscopic studies of the Didwana‐Rajod chondrite, which fell on 1991 August 12 in western Rajasthan, India, are presented. The results are compared with the Mössbauer data of several enstatite and ordinary chondrites including the Dhajala chondrite for which Mössbauer data were acquired during the present study. The Didwana‐Rajod chondrite's iron phases and its oxidation states strongly suggest that it should be classified as an H‐type ordinary chondrite instead of the earlier suggestion (based on petrographic studies) that it could be an enstatite chondrite. The present study demonstrates that Mössbauer spectroscopy is a very powerful technique for aiding in the classification of meteorites.  相似文献   

6.
Abstract— We report Rb-Sr analyses of phosphates from nine ordinary chondrites, more than doubling the number of meteorites for which such data are available. Ordinary chondrite phosphates characteristically have Rb/Sr ratios sufficiently low to permit accurate identification of initial 87Sr/86Sr, which is generally (but not in all cases) found to be significantly higher than the more primitive initial 87Sr/86Sr ratios inferred for carbonaceous chondrite refractory inclusions (ALL), basaltic achondrites (BABI), or bulk ordinary chondrites (in the ALL-BABI range). Such elevation of initial 87Sr/86Sr is generally considered to reflect isotopic redistribution during metamorphism, and with a model for Rb/Sr in this environment can lead to an inferred metamorphic timescale. For whole rock Rb/Sr the inferred formation intervals are typically tens of Ma (range nil to > 100 Ma). There is no evident relation between initial Sr elevation and metamorphic grade. There is not a clear difference in initial Sr effects between H and L chondrites; LL chondrites show much less (if any) elevation of initial Sr, but data are available for only two meteorites. For the first time it is possible to make a detailed comparison of initial Sr and I-Xe chronologies for several meteorites: these two potential metamorphic chronometers conspicuously fail to agree, in terms of both age and sequence of ages. A comparably definitive assessment of the comparison between initial Sr and Pb-Pb chronologies is not yet possible, but presently available data suggest that these two approaches to chondrite chronology also fail to agree. Without a correlation with metamorphic grade, or detailed agreement with an independent chronometer, it remains unclear whether initial 87Sr/86Sr in phosphates can be translated into a reliable chronometer for ordinary chondrite metamorphism, at least within simple interpretational frameworks.  相似文献   

7.
We have analysed whole rock L chondrites and separate minerals from the L3 chondrite Mezö Madaras for 87Rb-87Sr dating. Contrary to other groups of chondrites, whole rocks do not define a straight line in the (87Rb/86Sr, 87Sr/86Sr) diagram. Whereas unshocked meteorites of old K-Ar age plot on the isochron defined by the other chondrites, shocked objects, with younger K-Ar ages, plot above it. Exceptions to this correlation are Bjürbole for the first type and Homestead and Peace River for the second type. Our preferred interpretation is that this displacement in the (87Rb/86Sr, 87Sr/86Sr) diagram corresponds to Rb volatilization induced by reheating. Hand-picked and heavy liquid separates from Mezö Madaras scatter in the same diagram. In addition to possible Rb loss from feldspar, evidences are found for migration of Rb and Sr between olivine and feldspar, glass or clinopyroxene. We interpret this as the consequence of a short though important heating at the time of brecciation.  相似文献   

8.
Microprobe analyses of the major silicates in Clovis (no. 1), New Mexico, establish it as an H3 chondrite. Inclusions identified in Clovis are: breccia fragments; angular and vesicular chondrule or rock fragments composed almost entirely of glass and olivine (Fa12–22); chondrules, composed principally of pyroxene (Fs2–33) and olivine (Fa1–28); and Ca, Al and Ti-rich inclusions. These refractory enriched inclusions, similar in composition to those found in some carbonaceous chondrites, are rare in ordinary chondrites but in this study were observed in Sharps, Virginia (H3), Gobabeb, South Africa (H4), Dimmitt, Texas (H4), Weston, Connecticut (H4–6) and Clovis. Sodium, known to rim similar inclusions in carbonaceous chondrites, also occurs in the interiors of inclusions observed in this study, sometimes in moderate amounts. The Na distribution is regarded as primary and is not attributable, at least in total, to secondary Na extraction from the host matrix.  相似文献   

9.
Abstract– Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary (L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element contents for almost all objects in the chondrites are disturbed from their chondritic ratios, most probably during metamorphic re‐equilibration. However, the volatile elements (Na2O + K2O) in Ouzina scatter around the CI line, probably the result of being generated and/or processed in different environments as compared with those for Knyahinya. All studied objects from Knyahinya and Ouzina possess systematically fractionated trace element abundances. Depletion of LREE with respect to HREE and ultra‐refractory HFSE documents variable degrees of LREE transport into an external mineral sink and restricted mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility‐controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10× CI) in all studied objects suggest restricted mobility of the large Cs ion. All studied objects sampled and preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic chondrules of unequilibrated ordinary chondrites.  相似文献   

10.
Abstract— Recent measurements of ordinary chondrite physical and thermal properties along with new geothermometry studies have provided the necessary parameters for updating a previously proposed model (Miyamoto et al., 1981) for the thermal evolution and internal structure of ordinary chondrite parent bodies. Model calculations assumed a heat source term derived from the decay of 26Al (justification is provided). Differences from the previous model include: varying the thermal diffusivity parameter with increasing temperature (and decreasing porosity), using variable physical and thermal parameters to provide end member models, and incorporating a shortened thermal history of 60 Ma (obtained from new Pb-Pb chronology of phosphates) rather than 100 Ma. Times of isotopic closure in chondrite phosphates overlap the thermal model estimates, and postmetamorphic cooling rates from the model approximately coincide, in both trend and magnitude, with metallographic and fission track cooling rate data. Model calculations attempt to match peak metamorphic conditions in the central portions of these bodies and yield accretion ages between 1.4 to 3.1 Ma after calcium-aluminum inclusion (CAI) formation. Model calculations also predict that both the H and the L chondrite parent asteroids consisted of ~80% equilibrated and 20% unequilibrated chondritic material and that their original radii ranged from 80 to 95 km.  相似文献   

11.
Ustí nad Orlici (Kerhartice), a meteorite which fell on June 12, 1963 in Czechoslovakia, is classified as a L6 chondrite. Compositions of olivine (Fa 23.4), orthopyroxene (Fs 20, Wo 1.3), plagioclase (Ab85An10Or5) along with the bulk composition of the meteorite support this classification. Chromite compositions vary with grain size. Large chromites are higher in TiO2 and lower in Fe3 than small chromites. This may indicate that either these two chromites formed initially under different fO2 conditions, or that this difference resulted from different equilibration behaviors of both chromites as a function of grain size. The meteorite contains three distinct sulfide assemblages: 1) troilite-pentlandite, 2) troilite, pentlandite-cubanite-chalcopyrite-pyrrhotite-mackinawite, 3) troilite-tetrataenite-(Fe, Cu, Ni)1***. 02S. These assemblages indicate equilibration down to temperatures close to 200 °C.  相似文献   

12.
Mineralogic, textural, and compositional studies of black and white matrices in the unequilibrated ordinary chondrite Tieschitz (H/L, 3.6) show, for the first time in an ordinary chondrite, the presence of widespread, randomly distributed geode‐like voids and veins. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that these voids and veins are partially or completely filled by sodic–calcic amphiboles (winchite and barroisite). The occurrence of amphiboles provides unequivocal evidence of the involvement of fluids in the metamorphic evolution of the parent body of Tieschitz. The presence of amphiboles as the main hydrous phases, rather than phyllosilicates, indicates that aqueous fluids were present at or close to the peak of thermal metamorphism, rather than during the waning stages of the cooling history of the parent body. In addition, ferrous olivine crystals, in association with the amphibole, also establish an important link between thermal metamorphism and hydrous phases formed at high temperatures. Mineralogic and textural evidence suggests that the white matrix and amphibole formed contemporaneously from the same hydrous fluid, prior to the formation of ferrous olivine crystals. Additionally, a dark inclusion identified in the host chondrite has mineralogic, petrologic, and bulk chemical characteristics that are similar to the black matrix of host Tieschitz, suggesting that this dark inclusion was emplaced before or during parent body metamorphism.  相似文献   

13.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

14.
Abstract— Reflectance spectra of spinels and chromites have been studied as a function of composition. These two groups of minerals are spectrally distinct, which relates largely to differences in the types of major cations present. Both exhibit a number of absorption features in the 0.3–26 μm region that show systematic variations with composition and can be used to quantify or constrain certain compositional parameters, such as cation abundances, and site occupancies. For spinels, the best correlations exist between Fe2+ content and wavelength positions of the 0.46, 0.93, 2.8, Restrahelen, 12.3, 16.2, and 17.5 μm absorption features, Al and Fe3+ content with the wavelength position of the 0.93 μm absorption feature, and Cr content from the depth of the absorption band near 0.55 μm. For chromites, the best correlations exist between Cr content and wavelength positions of the 0.49, 0.59, 2, 17.5, and 23 μm absorption features, Fe2+ and Mg contents with the wavelength position of the 1.3 μm absorption feature, and Al content with the wavelength position of the 2 μm absorption feature. At shorter wavelengths, spinels and chromites are most readily distinguished by the wavelength position of the absorption band in the 2 μm region (<2.1 μm for spinels, >2.1 μm for chromite), while at longer wavelengths, spectral differences are more pronounced. The importance of being able to derive compositional information for spinels and chromites from spectral analysis stems from the relationship between composition and petrogenetic conditions (pressure, temperature, oxygen fugacity) and the widespread presence of spinels and chromites in the inner solar system. When coupled with the ability to derive compositional information for mafic silicates from spectral analysis, this opens up the possibility of deriving petrogenetic information for remote spinel‐ and chromite‐bearing targets from analysis of their reflectance spectra.  相似文献   

15.
Abstract— We present a method that combines Mössbauer spectroscopy and X‐ray diffraction to quantify the modal mineralogy of unequilibrated ordinary chondrites (UOCs). Despite being a fundamental tool in the interpretation of geological systems, there are no modal mineralogical data available for these meteorites. This is due to their fine‐grained nature, highly heterogeneous silicate mineralogy, and the presence of poorly characterized phases. Consequently, it has not been possible to obtain accurate modal mineralogy by conventional techniques such as point counting. Here we use Mössbauer spectroscopy as a preliminary identification technique and X‐ray diffraction provides the quantification for a suite of recent UOC falls. We find the most primitive UOCs to contain a significant amount of phyllosilicate material that was converted during metamorphism to form ferromagnesian silicates. A complete suite of Antarctic samples is analyzed by each method to observe mineralogical trends and these are compared with trends shown by recent falls. The fact that mineralogical relationships shown by finds and falls are in agreement allows us to be confident that we are observing the products of pre‐terrestrial alteration. Mössbauer spectroscopy reveals evidence of steadily increasing reduction with metamorphism in the UOCs. Because this technique allows comparisons to be made between UOCs and EOCs, our reduction sequence can be combined with other evidence showing progressive oxidation in the EOCs. This yields an integrated model of changing redox conditions on equilibrating ordinary chondrite parent bodies.  相似文献   

16.
Abstract A 220 × 430 μm Mg-Al-chromite fragment in the Raguli H3.8 ordinary chondrite exhibits distinct optical and compositional zoning. The dark central region of the Mg-Al-chromite is enriched in MgO, Al2O3 and ZnO and depleted in TiO2, Cr2O3, FeO and MnO relative to the lighter outer region. A subhedral olivine grain attached to radiating euhedral ilmenites is present in the central region of the fragment. One of the ilmenite crystals contains a tiny grain (0.5 × 5.8 μm) of baddeleyite (ZrO2). Two end-member pyrophanite grains (MnTiO3) occur in the outer portion of the fragment This is the first occurrence of pyrophanite and baddeleyite in an ordinary chondrite. Although it is possible that the Mg-Al-chromite fragment was derived from an achondritic projectile of unusual composition, we offer two alternative models for its formation. These include (a) a multi-stage process involving nebular melting of a chromian-spinel chondrule that had accreted some olivine-bearing, Mn-rich material followed by metamorphism on the parent body, and (b) formation of the fragment on a metamorphosed parent body from an impact melt of a chromite-rich assemblage containing Mn-rich ilmenite. We favor the latter alternative.  相似文献   

17.
Abstract— Bulk and grain densities of 132 ordinary chondrites from the Vatican Observatory collection were measured and compared with their magnetic susceptibility (for the most part using previously measured values; ten new susceptibility measures were taken for this study). Grain density and magnetic susceptibility combined provide a reliable method of classifying unweathered ordinary chondrites. Unlike traditional chemical tests, this method is fast, nondestructive, and characterizes the whole rock, making it especially appropriate for surveying large collections. The system is less viable for finds; extensive weathering of metallic iron in an H chondrite can cause it to plot among L chondrites, while heavily weathered L chondrites plot among the LL group. This system has revealed outlier stones that may be misclassified meteorites or mislabeled samples; in every case where the magnetic susceptibility of a meteorite does not fit its putative classification, the grain density is also found to be in disagreement in a manner consistent with either severe weathering or misidentification. An analysis of stones from five showers shows that, excluding outliers, these samples tend to cluster tightly within their appropriate groups in a plot of grain versus magnetic susceptibility.  相似文献   

18.
Extraterrestrial particulate materials on the Earth can originate in the form of collisional debris from the asteroid belt, cometary material, or as meteoroid ablation spherules. Signatures that link them to their parent bodies become obliterated if the frictional heating is severe during atmospheric entry. We investigated 481 micrometeorites isolated from ~300 kg of deep sea sediment, out of which 15 spherules appear to have retained signatures of their provenance, based on their textures, bulk chemical compositions, and relict grain compositions. Seven of these 15 spherules contain chromite grains whose compositions help in distinguishing subgroups within the ordinary chondrite sources. There are seven other spherules which comprise either entirely of dusty olivines or contain dusty olivines as relict grains. Two of these spherules appear to be chondrules from an unequilibrated ordinary chondrite. In addition, a porphyritic olivine pyroxene (POP) chondrule‐like spherule is also recovered. The bulk chemical composition of all the spherules, in combination with trace elements, the chromite composition, and presence of dusty olivines suggest an ordinary chondritic source. These micrometeorites have undergone minimal frictional heating during their passage through the atmosphere and have retained these features. These micrometeorites therefore also imply there is a significant contribution from ordinary chondritic sources to the micrometeorite flux on the Earth.  相似文献   

19.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

20.
The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye‐catching, black, and plagioclase‐(maskelynite)‐rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate‐bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE‐pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An‐content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号