首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

2.
Abstract

The annual water balance of Lake Kyoga is estimated by a comparison of upstream and downstream flows in the Nile channel during a period of reliable measurements (1940–1977), supported by rainfall records over the basin. The relative contributions of net lake rainfall and tributary inflows are estimated. Changes in annual rainfall and seasonal distribution are examined.

Editor Z.W. Kundzewicz

Citation Brown, E. and Sutcliffe, J.V., 2013. The water balance of Lake Kyoga, Uganda. Hydrological Sciences Journal, 58 (2), 342–353.  相似文献   

3.
ABSTRACT

Water temperature dynamics in a reservoir are affected by its bathymetry, climatic conditions and hydrological processes. Miyun Reservoir in China is a large and deep reservoir that experienced a large water level decline in 1999–2004 due to low rainfall and relatively high water supply to Beijing. To study changes of stratification characteristics in Miyun Reservoir from 1998 to 2011, the one-dimensional year-round lake model MINLAKE2010 was modified by adding a new selective withdraw module and a reservoir hydrological model. Simulation results under three scenarios demonstrated that the new MINLAKE2012 model accurately predicted daily water levels and temperature dynamics during the water level fluctuation period. The water level decline led to 7.6 and 3.8°C increases in the maximum and mean bottom temperatures and about 29 days reduction in the stratification days. These simulation results provide an insight into the thermal evolution of Miyun Reservoir during the planned future water filling process.
Editor D. Koutsoyiannis Associate editor M. Acreman  相似文献   

4.
Considerable uncertainty occurs in the parameter estimates of traditional rainfall–water level transfer function noise (TFN) models, especially with the models built using monthly time step datasets. This is due to the equal weights assigned for rainfall occurring during both water level rise and water level drop events while estimating the TFN model parameters using the least square technique. As an alternative to this approach, a threshold rainfall-based binary-weighted least square method was adopted to estimate the TFN model parameters. The efficacy of this binary-weighted approach in estimating the TFN model parameters was tested on 26 observation wells distributed across the Adyar River basin in Southern India. Model performance indices such as mean absolute error and coefficient of determination values showed that the proposed binary-weighted approach of fitting independent threshold-based TFN models for water level rise and water level drop scenarios considerably improves the model accuracy over other traditional TFN models.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Fiori  相似文献   

5.
Abstract

Kanchanapally watershed covering an area of about 11 km2 in Nalgonda district, Andhra Pradesh, India is located in granitic terrain. Groundwater recharge has been estimated from a water balance model using hydrometeorological data from 1978–1994. The monthly recharge estimates obtained from the water balance model formed input for the groundwater flow model during transient model testing. The groundwater flow model has been prepared to simulate steady state groundwater conditions of 1977 using the nested squares finite difference method. The transient groundwater flow model has been tested during 1977–1994 using the estimated recharge values. The present study helped verify the usefulness of monthly recharge estimates for accounting dynamic variations in recharge as reflected in water level fluctuations in hydrographs.  相似文献   

6.
Abstract

Abstract The water balance of Lake Nainital in the Kumaun Himalaya, India was previously computed using water budgeting and other indirect methods. An important data set of stable oxygen and hydrogen isotopic composition of water sources of the lake region was also presented and used to verify the annual estimates of subsurface flow/water balance. In the present study, the same data set has been used to investigate the dynamics of this lake in terms of the seasonal processes operative during the annual hydrological cycle: increased inflow during the monsoon, delayed groundwater inflow, and stratification and mixing of water. Based on the available data, a simple two-box model was used to constrain the values of exchange coefficients between the hypolimnion and epilimnion layers and to estimate evaporation and outflow components from the isotopic data.  相似文献   

7.
Integrated dynamic water and chloride balance models with a catchment‐scale hydrological model (PRMS) are used to investigate the response of a terminal tropical lake, Lake Abiyata, to climate variability and water use practices in its catchment. The hydrological model is used to investigate the response of the catchment to different climate and land‐use change scenarios that are incorporated into the lake model. Lake depth–area–volume relationships were established from lake bathymetries. Missing data in the time series were filled using statistical regression techniques. Based on mean monthly data, the lake water balance model produced a good agreement between the simulated and observed levels of Lake Abiyata for the period 1968–83. From 1984 onwards the simulated lake level is overestimated with respect to the observed one, while the chloride concentration is largely underestimated. This discrepancy is attributed to human use of water from the influent rivers or directly from the lake. The simulated lake level and chloride concentration are in better agreement with observed values (r2 = 0·96) when human water use for irrigation and salt exploitation are included in the model. A comparison of the simulation with and without human consumption indicates that climate variability controls the interannual fluctuations and that the human water use affects the equilibrium of the system by strongly reducing the lake level. Sensitivity analysis based on a mean climatic year showed that, after prolonged mean climatic conditions, Lake Abiyata reacts more rapidly to an abrupt shift to wetter conditions than to dry conditions. This study shows the significant sensitivity of the level and salinity of the terminal Lake Abiyata to small changes in climate or land use, making it a very good ‘recorder’ of environmental changes that may occur in the catchment at different time scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
《水文科学杂志》2013,58(3):418-431
Abstract

The water balance of the closed freshwater Lake Awassa was estimated using a spreadsheet hydrological model based on long-term monthly hydrometeorological data. The model uses monthly evaporation, river discharge and precipitation data as input. The net groundwater flux is obtained from model simulation as a residual of other water balance components. The result revealed that evaporation, precipitation, and runoff constitute 131, 106 and 83 × 106 m3 of the annual water balance of the lake, respectively. The annual net groundwater outflow from the lake to adjacent basins is 58 × 106 m3. The simulated and recorded lake levels fit well for much of the simulation period (1981–1999). However, for recent years, the simulated and recorded levels do not fit well. This may be explained in terms of the combined effects of land-use change and neotectonism, which have affected the long-term average water balance. With detailed long-term hydrogeological and meteorological data, investigation of the subsurface hydrodynamics, and including the effect of land-use change and tectonism on surface water and groundwater fluxes, the water balance model can be used efficiently for water management practice. The result of this study is expected to play a positive role in future sustainable use of water resources in the catchment.  相似文献   

9.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

10.
Abstract

Abstract Accurate estimates of water losses from mature Sitka spruce (Picea sitchensis) plantations in the UK uplands are required to assess the sustainability of water supply in the event of land-use change. Many investigations have demonstrated that afforestation increases water losses from temperate upland catchments, to up to 40% of annual site rainfall. In a 0.86 km2 upland water supply catchment in southwest Scotland, interception loss in a Sitka spruce-dominated 37-year old plantation, was 52% of annual precipitation (2912 mm), considerably higher than reported in previous studies of similar catchments. From direct measurements of rainfall, cloudwater, discharge and soil evaporation, the catchment water balance was 96–117% complete, within the limits of measurement error. The most probable explanation for the higher forest interception loss reported here is the inclusion of cloudwater measurements.  相似文献   

11.
R. K. SAXENA 《水文研究》1996,10(10):1273-1281
Lake evaporation has been estimated for a shallow lake using a combination of water and isotope mass balance, accounting for the isotopic non-steady state of lake water. The main feature of the isotope method is that inflows need not be measured. Knowledge of their isotopic content is sufficient. Oxygen-18 content, i.e. (δ18O), of lake water, inflows and outflow was measured on a weekly basis, whereas for precipitation it was monitored daily. The discharge from the lake was also recorded daily. Lake water level, relative humidity, air, and lake water surface temperatures were recorded by a logger. The weather data were recorded on a small island in the lake. It was observed that the lake is isotopically well mixed. Furthermore, the atmospheric moisture was not always in isotopic equilibrium with the precipitation. Daily lake evaporation was estimated as an average of six to eight days depending upon the field logistics. Lake evaporation varied from 0.6 to about 5.4 mm/day during the experimental period. It was found that evaporation estimates are very sensitive to small variations in δ18O of lake evaporate. Induced changes of 10% in δ18O of lake evaporate caused errors in evaporation estimates of 9–31%, while similar induced changes in δ18O of inflows caused errors of 8–18%. Thus, an accurate experimental determination of δ18O of lake evaporate is relatively more important.  相似文献   

12.
鄱阳湖典型洲滩湿地水分补排关系   总被引:3,自引:1,他引:2  
林欢  许秀丽  张奇 《湖泊科学》2017,29(1):160-175
湿地水分在地下水含水层-土壤-植物-大气界面的运移和转换是维持能量和营养物平衡的重要环节,水分运移是湿地生态水文过程研究的关键.数值模型模拟已成为水分运移研究的重要手段,然而限于复杂的湿地自然条件及有限的监测手段,部分界面水分通量连续动态变化数据的获取及定量化工作较为困难,目前应用数值模拟法于湿地水分运移研究的案例仍不多见.本文以鄱阳湖典型湿地为研究区,构建垂向一维数值模型,阐释了湖泊水位显著季节性变化条件下,湿地水分在不同界面的传输过程,量化了湿地水分的补排关系.结果表明:(1)界面水分通量季节性差异大,降雨入渗地面和根系层水分渗漏均对降雨变化响应敏感,主要集中在4—6月,分别占年总量(1450和1053 mm)的65%和73%.土面蒸发和植物蒸腾年总量为176和926 mm,土面蒸发主要受气候条件影响,植物蒸腾还与植物生长特征有关,均集中在7—8月,分别占年总量的30%和47%.深层土壤向浅层根系层的水分补给集中发生在地下水浅埋时段6—8月,占年总量(609 mm)的76%;(2)湿地植物根系层水分补排受鄱阳湖水位季节性波动影响显著.除丰水期(7—9月)主要补给为深层土壤水外,退、枯、涨水期的主要补给均为降水入渗.涨水期(4—6月)和枯水期(12—3月)的主要排泄为根系层水分渗漏,丰水期以植物蒸腾排泄为主,退水期(10—11月),土面蒸发与植物蒸腾为主要排泄,且比重相当.本文定量了鄱阳湖典型湿地不同界面水分连续交换关系,区分了土面蒸发和植物蒸腾,辨析了各界面水分的主要影响因子,研究结果有助于深入理解水分在湿地生态系统地下水含水层-土壤-植物-大气界面的相互作用机制,认识湖泊洲滩湿地水量平衡,为揭示湖泊水情变化对湿地生态的可能影响提供依据,为湿地生态水文过程研究提供重要方法和理论参考.  相似文献   

13.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

14.
ABSTRACT

Water from the alluvium of ephemeral rivers in Zimbabwe is increasingly being used. These alluvial aquifers are recharged annually from infiltrating floodwater. Nonetheless, the size of this water resource is not without limit and an understanding of the hydrological processes of an alluvial aquifer is required for its sustainable management. This paper presents the development of a water balance model, which estimates the water level in an alluvial aquifer recharged by surface flow and rainfall, while allowing for abstraction, evaporation and other losses. The model is coupled with a watershed model, which generates inflows from upland catchment areas and tributaries. Climate, hydrological, land cover and geomorphological data were collected as inputs to both models as well as observed flow and water levels for model calibration and validation. The sand river model was found to be good at simulating the observed water level and was most sensitive to porosity and seepage.  相似文献   

15.
《Journal of Hydrology》2006,316(1-4):233-247
The annual water budget of Lake Tana is determined from estimates of runoff, rainfall on the lake, measured outflow and empirically determined evaporation. Simulation of lake level variation (1960–1992) has been conducted through modeling at a monthly time step. Despite the ±20% rainfall variations in the Blue Nile basin in the last 50 years, the lake level remained regular. A preliminary analysis of the sensitivity of level and outflow of the lake suggests that they are controlled more by variation in rainfall than by basin-scale forcing induced by human activities. The analysis shows that a drastic (40–45%) and sustained (7–8 years) rainfall reduction is required to change the lake from out flowing to terminal (cessation of outflow). However, the outflow from the lake shows significant variation responding to the rainfall variations. Unlike the terminal lakes in the Ethiopian rift valley or the other large lakes of Tropical Africa, at its present hydrologic condition, the Lake Tana level is less sensitive to rainfall variation and changes in catchment characteristics.  相似文献   

16.
Abstract

The normalized antecedent precipitation index (NAPI) model by Heggen for the prediction of runoff yield is analytically derived from the water balance equation. Heggen's model has been simplified further to a rational form and its performance verified with the Soil Conservation Service Curve Number (SCS-CN) model. The simplified model has three coefficients specific to a watershed, and requires two inputs: rainfall and the derived parameter, NAPI. The characteristic behaviour of the NAPI has resonance with the curve number (CN) of the SCS model. The proposed NAPI model was applied to three watersheds in the semi-arid region of India to simulate runoff yield. The model showed improved correlation between the observed and predicted runoff data compared to the SCS-CN model. The F test and paired t test also confirmed the reliability of the model with significance levels of 0.01 and 0.001%, respectively. The proposed model could be used successfully for rainfall–runoff modelling in a watershed.

Citation Ali, S., Ghosh, N. C. & Singh, R. (2010) Rainfall–runoff simulation using a normalized antecedent precipitation index. Hydrol. Sci. J. 55(2), 266–274.  相似文献   

17.
18.
A modelling study to investigate the effects of land use change from natural forest to agricultural land on large-scale catchment runoff in southern Africa is described. The evaporative component of the model considers the catchment to be composed of one of three surface types—forest, agricultural land or water surface. Values of the model parameters for the forest and agricultural lands were obtained from experimental studies carried out in the dry zone of India. Estimates of average monthly potential evaporation, together with measurements of monthly rainfall, were used in the model to predict the monthly levels of Lake Malawi. These were compared with observed levels. From 1896 to 1967 the major fluctuations in lake level, both seasonally and annually, are well described by this model (excepting the period from 1935 to 1945, immediately following the time when there was no outflow from the lake) using a value of 64% for the forest coverage of the catchment. The overall agreement between prediction and observation indicates that variations in rainfall alone, without changes in either evaporative demand or in the hydraulic regime of the lake, are sufficient to explain lake level changes. For the more recent period (1954–1994), model predictions of lake level which take into account a decrease in forest cover of 13% over the period 1967–1990 (consistent with the actual decrease in forest cover for this period) agree well with observations both annually and seasonally. Without this decrease in forest cover, the model predicted that the lake level would have been about 1 m lower than that observed during the southern African drought of 1992. The model, in conjunction with real-time rainfall data obtained from land-based gauges, radar or satellite observations, can be used for real-time water resource management applications such as the operation of barrages regulating the flow from Lake Malawi or for the issuing of flood or drought warnings.  相似文献   

19.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

20.
A twelve-year record of daily evaporation and evapotranspiration measurements at the Coleraine campus of the University of Ulster in Northern Ireland is analysed. Potential evapotranspiration (PE) is independently derived from: (i) Penman PT estimates; (ii) irrigated grass lysimeters PE(L); (iii) measurements of tank evaporation, PE(T). Both PE(T) and PE(L) are higher in winter than PT and have more prolonged summer peaks. Examination of soil moisture deficits during the period shows that actual evapotranspiration (AE) rarely falls below the potential rate and that PE and AE are therefore equal for most of the year. The availability of rainfall, stream discharge and groundwater data from an instrumented river catchment on the University campus enables water balances to be constructed for the period of study. Separate water balances using each of the PE estimates show that Penman PT most satisfactorily reflects catchment storage changes monitored independently. Penman PT is therefore confirmed as the most appropriate estimate of PE for the climatic, soil and vegetation conditions of the region. The use of Penman PT in water balance determinations, however, does not secure perfect agreement between estimated recharge and depletion of catchment storage on the one hand, and observed changes in water-table level on the other. The combined effects of error in surface water balance determinations are estimated at about 13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号