首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
城市下垫面改变引起水文循环过程发生变异,导致目前已掌握的天然情况下的产汇流规律和机制难以解释城市化等新形势下的水文现象与过程,而面临需重新再认识的挑战。本文以长三角地区为典型,建立了不同城市化水平及空间规模的水文试验流域,探讨了快速城市化地区暴雨洪水响应规律和机制。结果表明:(1)不同量级降水事件下城镇用地土壤水响应程度(表层土壤水涨幅基本超过4%)总体高于其他土地利用类型,城市化地区下垫面的改变通过影响土壤水动态响应模式直接影响了地表产流过程,植被覆盖率较低的城镇用地和荒地土壤含水率呈现出陡涨陡落现象,而植被作用下的土地利用类型则表现出缓慢上升和缓慢消退的土壤水响应过程。(2)流域洪峰滞时和洪峰流量整体表现为随流域面积增加而呈幂律函数关系形式的增加。(3)总降水量与主要洪水特征(如洪峰流量、单位面积洪峰流量和径流深)基本呈显著相关(相关系数分别达0.49、0.41和0.78以上)。城市下垫面通过改变土壤水动态响应等产汇流特征而直接影响了洪水过程,未来长三角地区暴雨洪水在城市化和气候因素双重作用下呈现持续加剧的趋势。  相似文献   

2.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

3.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   

4.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   

5.
There is no doubt that land cover and climate changes have consequences on landslide activity, but it is still an open issue to assess and quantify their impacts. Wanzhou County in southwest China was selected as the test area to study rainfall-induced shallow landslide susceptibility under the future changes of land use and land cover (LULC) and climate. We used a high-resolution meteorological precipitation dataset and frequency distribution model to analyse the present extreme and antecedent rainfall conditions related to landslide activity. The future climate change factors were obtained from a 4-member multi-model ensemble that was derived from statistically downscaled regional climate simulations. The future LULC maps were simulated by the land change modeller (LCM) integrated into IDRISI Selva software. A total of six scenarios were defined by considering the rainfall (antecedent conditions and extreme events) and LULC changes towards two time periods (mid and late XXI century). A physically-based model was used to assess landslide susceptibility under these different scenarios. The results showed that the magnitude of both antecedent effective recharge and event rainfall in the region will evidently increase in the future. Under the scenario with a return period of 100 years, the antecedent rainfall in summer will increase by up to 63% whereas the event rainfall will increase by up to 54% for the late 21st century. The most considerable changes of LULC will be the increase of forest cover and the decrease of farming land. The magnitude of this change can reach + 22.1% (forest) and –9.2% (farmland) from 2010 until 2100, respectively. We found that the negative impact of climate change on landslide susceptibility is greater than the stabilizing effect of LULC change, leading to an over decrease in stability over the study area. This is one of the first studies across Asia to assess and quantify changes of regional landslide susceptibility under scenarios driven by LULC and climate change. Our results aim to guide land use planning and climate change mitigation considerations to reduce landslide risk.  相似文献   

6.
Effective information regarding environmental responses to future land-use and climate change scenarios provides useful support for decision making in land use planning, management and policies. This study developed an approach for modeling and examining the impacts of future land-use and climate change scenarios on streamflow, surface runoff and groundwater discharge using an empirical land-use change model, a watershed hydrological model based on various land use policies and climate change scenarios in an urbanizing watershed in Taiwan. The results of the study indicated that various demand and conversion policies had different levels of impact on hydrological components in all land-use scenarios in the study watershed. Climate changes were projected to have a greater impact in increasing surface runoff and reducing groundwater discharge than are land use changes. Additionally, the spatial distributions of land-use changes also influenced hydrological processes in both downstream and upstream areas, particularly in the downstream watershed. The impacts on hydrological components when considering both land use and climate changes exceeded those when only considering land use changes or climate changes, particularly on surface runoff and groundwater discharge. However, the proposed approach provided a useful source of information for assessing the responses of land use and hydrological processes to future land use and climate changes.  相似文献   

7.
This article examines the effects of watershed urbanization on stream flood behavior in the Los Angeles metropolitan region. Stream gauge data, spatially distributed rainfall data, land use/land cover, and census population data were used to quantify change in flood behavior and urbanization in multiple watersheds. Increase in flood discharge started at the very early stage of the urbanization when the population density was relatively low but the rate of increase of flood discharge varied across watersheds depending on the distribution of the imperviousness surface and flood mitigation practices. This spatial variability in rainfall–runoff indices and the increasing flood risk across the metropolitan region has posed a challenge to the conventional flood emergency management, which usually responds to flood damages rather than being concerned with the broader issues of land use, land cover, and planning. This study pointed out that alternative land use planning and flood management practices could be mitigating the urban flood implemented hazard.  相似文献   

8.
Historical and exact information about the land use/land cover change is very important for regional sustainable development. The aim of this paper is to determine the rapid changes in land use/land cover (LULC) pattern due to agriculture expansion, environmental calamities such as flood and government policies over Upper Narmada basin, India. Multi-temporal Landsat satellite images for years 1990, 2000, 2010 and 2015 were used to analyze and monitor the changes in LULC with an overall accuracy of more than 85%. Results revealed a potential decrease in natural vegetation (? 9.52%) due to the expansion of settlement (+ 0.52%) and cropland (+ 9.43%) from 1990 to 2015. In the present study, Cellular Automata and Markov (CA–Markov), an integrated tool was used to project the short-term LULC map of year 2030. The projected LULC (2030) indicated the expansion of built-up area along with the cropland and degradation in the vegetation area. The outcomes from the study can help as a guiding tool for protection of natural vegetation and the management of the built-up area. Additionally, it will help in devising the strategies to utilize every bit of land in the study area for decision makers.  相似文献   

9.
Natural Hazards - Spatial information on flood risk and flood-related crop losses is important in flood mitigation and risk management in agricultural watersheds. In this study, loss of water bound...  相似文献   

10.
Hürlimann  Marcel  Guo  Zizheng  Puig-Polo  Carol  Medina  Vicente 《Landslides》2022,19(1):99-118

It is widely accepted that future environmental changes will affect rainfall-induced shallow slides in high-mountain areas. In this study, the Val d’Aran region located in the Central Pyrenees was selected to analyze and quantify the impacts of land use and land cover (LULC) and climate changes on regional landslides susceptibility. We analyzed 26 climate models of the EURO-CORDEX database focussing on the future rainfall conditions. The IDRISI TerrSet software suite was used to create the future LULC maps. These two inputs were analyzed individually and in a combined way defining 20 different scenarios. All these scenarios were incorporated in a physically based stability model to compute landslides susceptibility maps. The results showed that both environmental conditions will considerably change in the future. The daily rainfall will increase between 14 and 26% assuming a return period of 100 years. This intensification of precipitation will produce an overall decrease of the stability condition in the study area. Regarding the LULC prediction, the forest area will significantly increase, while in particular grassland, but also shrubs decrease. As a consequence, the overall stability condition improves, because the root strength is higher in forest than in grassland and shrubs. When we analyzed the combined impacts, the results showed that the positive effect of LULC changes is larger than the negative influence of rainfall changes. Hence, when combining the two aspects in the future scenarios, the stability condition in the study area will improve.

  相似文献   

11.
建立以水库群系统安全度最大、行蓄洪区系统损失最小为目标函数,将河道堤防安全行洪考虑为约束条件的复杂防洪系统多目标递阶优化调度模型(MoHOOM),以行蓄洪区总分洪流量为协调变量,将河道水流连续方程解耦,基于大系统分解协调法建立协调层和基于粒子群算法求解底层子系统优化问题,形成三级递阶分解协调结构和相应求解方法。以淮河中游防洪系统为背景进行了实例研究,给出了水库群泄流和行蓄洪区分洪最优方案,在相同初始计算条件下,优化模型结果比实际调度降低了鲇鱼山和梅山水库0.37和0.01的安全度指标,减小下游蒋家集和润河集河段超过安全泄量以上100 m3/s和720 m3/s的洪峰流量,启用南润段行洪区致损1 256.1万元;比规则调度降低了鲇鱼山和梅山水库0.24和0.21的安全度指标,减小下游蒋家集河段超过安全泄量以上750 m3/s的洪峰流量,避免南润段行洪区损失341.6万元。模型有利于挖掘上游水库群的防洪能力,在保障河道堤防安全行洪条件下,减少下游不必要的行蓄洪区分洪损失,以系统全局寻优方式进行复杂防洪系统联合调度。  相似文献   

12.
Flood risk is expected to increase in many regions of the world in the next decades with rising flood losses as a consequence. First and foremost, it can be attributed to the expansion of settlement and industrial areas into flood plains and the resulting accumulation of assets. For a future-oriented and a more robust flood risk management, it is therefore of importance not only to estimate potential impacts of climate change on the flood hazard, but also to analyze the spatio-temporal dynamics of flood exposure due to land use changes. In this study, carried out in the Alpine Lech Valley in Tyrol (Austria), various land use scenarios until 2030 were developed by means of a spatially explicit land use model, national spatial planning scenarios and current spatial policies. The combination of the simulated land use patterns with different inundation scenarios enabled us to derive statements about possible future changes in flood-exposed built-up areas. The results indicate that the potential assets at risk depend very much on the selected socioeconomic scenario. The important conditions affecting the potential assets at risk that differ between the scenarios are the demand for new built-up areas as well as on the types of conversions allowed to provide the necessary areas at certain locations. The range of potential changes in flood-exposed residential areas varies from no further change in the most moderate scenario ‘Overall Risk’ to 119 % increase in the most extreme scenario ‘Overall Growth’ (under current spatial policy) and 159 % increase when disregarding current building restrictions.  相似文献   

13.
The increasing natural disasters, especially floods during the last quarter century, are raising the economic losses in Taiwan. The most severe hazard in Taiwan is flooding induced by typhoons and storms in summer and autumn. By comparing the rivers around the world, the ones in Taiwan have the steepest slopes, the largest discharge per unit drainage area, and the shortest time of concentrations. Rapid urbanization without proper land uses managements usually worsen the flood problems. Consequently, flood hazards mitigation has become the most essential task for Taiwan to deal with. Although the government keeps improving flood defense structures, the flood damage grows continuously. In this article, possible flood mitigation strategies are identified for coping with complex environmental and social decisions with flood risk involved.  相似文献   

14.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

15.
土地利用变化对水文系统的影响研究   总被引:22,自引:0,他引:22  
以秦淮河流域为研究区域,利用现代遥感、地理信息系统等多种数字技术,获取流域空间分布的下垫面信息和中间状态信息,细致地刻画了流域内的水文过程,建立了研究区域数字水文模型。利用所建立的数字水文模型,对定义的土地利用变化情景进行了模拟。模拟结果表明,模型可以定性和定量地反映各种土地利用变化对水资源系统尤其是对水量平衡和防洪情势的影响程度。  相似文献   

16.
The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire and urbanization. Soil erosion often leads to soil truncation, loss of fertility, slope instability, etc.which causes irreversible effects on the poorly renewable soil resource. In view of this, a study was conducted in Kelantan River basin to predict soil loss as influenced by long-term land use/land-cover(LULC) changes in the area. The study was conducted with the aim of predicting and assessing soil erosion as it is influenced by long-term LULC changes. The 13,100 km~2 watershed was delineated into four sub-catchments Galas, Pergau, Lebir and Nenggiri for precise result estimation and ease of execution. GIS-based Universal Soil Loss Equation(USLE) model was used to predict soil loss in this study. The model inputs used for the temporal and spatial calculation of soil erosion include rainfall erosivity factor,topographic factor, land cover and management factor as well as erodibility factor. The results showed that 67.54% of soil loss is located under low erosion potential(reversible soil loss) or 0-1 t ha~(-1) yr~(-1) soil loss in Galas, 59.17% in Pergau, 53.32% in Lebir and 56.76% in Nenggiri all under the 2013 LULC condition.Results from the correlation of soil erosion rates with LULC changes indicated that cleared land in all the four catchments and under all LULC conditions(1984-2013) appears to be the dominant with the highest erosion losses. Similarly, grassland and forest were also observed to regulate erosion rates in the area. This is because the vegetation cover provided by these LULC types protects the soil from direct impact of rain drops which invariably reduce soil loss to the barest minimum. Overall, it was concluded that the results have shown the significance of LULC in the control of erosion. Maps generated from the study may be useful to planners and land use managers to take appropriate decisions for soil conservation.  相似文献   

17.
土地利用变化对海河流域典型区域的径流影响   总被引:8,自引:0,他引:8       下载免费PDF全文
为研究海河流域径流对土地利用变化的响应,以阜平流域、匡门口流域和界河铺流域为研究区,利用1970—2011年的水文气象资料,分析了不同土地利用的时空转移特征,然后结合SWAT(Soil and Water Assessment Tool)模型,设置4种土地利用情景,评价了土地利用变化对径流的影响。结果表明:模型能够较好地模拟全年及汛期月流量过程;多年径流量呈下降趋势,20世纪80年代到90年代中期呈波动性变化;不同的土地利用类型在时空上的转化呈现可逆性,主要是林地增加,草地减少,耕地略有增加;林地的增加和草地的减少会降低汛期径流量以及最大月径流量;汛期径流系数随着林地面积的增加而减小。合理地规划土地利用格局,对控制流域水文事件具有重要意义。  相似文献   

18.
The extent of saltwater intrusion in southern Baldwin County,Alabama   总被引:1,自引:0,他引:1  
Sea level rise (SLR) as a result of global warming has an impact on the increasing inundation on the coastal area. Nowadays, Semarang coastal area in Indonesia is already subject to coastal hazard due to tidal inundation and land subsidence. The impact of the inundation is predicted to be even more severe with the scenario of sea level rise. This paper concentrates on the risk assessment to the population, land use, and monetary losses as a result of coastal inundation under enhanced sea level rise. This paper uses the scenario of the depth of inundation to generate coastal inundation model using GIS-Technology. Anticipatory issues including methodology development for hazard assessment would be necessary for Semarang coastal area, and therefore, geo-information technology can be considered as a useful tool to rapidly assess the impact of the coastal hazard and evaluate the economic losses.  相似文献   

19.
Demand for irrigation water increases day by day along with meteorological vagaries and extension of irrigated area in the drought-prone Barind area of Bangladesh. This increasing stress on water resource is gradually making the area water scare. The study is aimed at studying the morphometric parameters of the Atrai-Sib river basin in the Barind area and on their relevance in water resource management based on satellite images and SRTM DEM. Computation and delineation of linear and areal aspects of the river basin and its morphometric components reveals that stream order ranges from first to eighth order showing dendritic drainage pattern. The basin represents homogeneity of soil texture; possibility of flash flood after heavy rainfall with low discharge of runoff; and is not largely affected by structural disturbance. Moderate drainage density of the river basin area indicates semipermeable soil lithology with moderate vegetation. Mean bifurcation ratio of the basin is calculated as 3.92 and elongation ratio 0.75, which indicate elongated shape of the river basin with low to moderate relief bounded in the east and west by ‘moderate to steep’ sloping land area. It reveals a flatter peak of runoff flow for longer duration and gravity flow of water. The gentle but undulating slope of the basin represents ‘excellent’ category for groundwater management as the site is favorable for infiltration due to maximum time of runoff water percolation. The east facing slopes of the basin show higher moisture content and higher vegetation than the west-facing slope. The land use pattern of the area shows that major part (95.29%) comes under the cultivated land which will support future river basin development and management. Results obtained from the study would be useful in categorization of river basins for future water resource development and management, and selection of suitable sites for water conservation structures such as check dam, percolation tank, artificial recharge of groundwater through MAR technique etc.  相似文献   

20.
Pakistan is exposed to numerous hazards, but the problem of recurrent floods has been causing massive losses to lives and other properties. Swat valley is no exception to it. In this paper, an attempt has been made to analyse the causes and associated socio-economic impacts of floods on the Swat valley, Pakistan. Swat valley falls in the Hindukush region, North-west-Pakistan. The valley has been studied with special reference to its physical and socio-economic environment. Similarly, three-sample villages were also randomly selected from the active floodplain for micro-level analysis. The sample villages include Ningolai, Delay and Ghureijo. All the three-sample communities are located on the right bank of river Swat. This area is located in the active flood zone of Swat valley. The analysis revealed that in the study area, floods occur during summer season, which is mainly caused by heavy rainfall as well as rapid melting of snow and glacier. Besides these, there are some floods intensifying factors, which accelerate intensity of floods and enhance resultant damages in the valley. It was found that during flood season, water overflows the natural levees and trigger tremendous loses to housing, agricultural land, standing crops and other properties. The flood-related Government Departments have only implemented limited structural mitigation measures. However, in addition to structural measure, land-use zoning and flood abatement strategies would largely help in reducing the adverse consequences of this recurrent phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号