首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Koomen  Martin  Howard  Russell  Hansen  Richard  Hansen  Shirley 《Solar physics》1974,34(2):447-452
On 16 June 1972, the Naval Research Laboratory's coronagraph aboard OSO-7 tracked a huge coronal cloud moving outward from the Sun. Concurrent observations of the inner corona made by the High Altitude Observatory at Mauna Loa showed bifurcation of the underlying coronal structure. Together, these observations can be interpreted as evidence for the stretching of the closed fields into a magnetic bottle, extending to at least eight radii from the center of the Sun.  相似文献   

2.
The influence of the solar wind on large-scale temperature and density distributions in the lower corona is studied. This influence is most profoundly felt through its effect upon the geometry of coronal magnetic fields since the presence of expansion divides the corona into magnetically open and closed regions. Each of these regions is governed by entirely different energy transport processes. This results in significant temperature differences since only the open field regions suffer outward conductive heat losses. Because the temperature influences the density in an exponential manner, large density inhomogeneities are to be expected.An approximate method for calculating the temperature and density distribution in a known magnetic field geometry is outlined and numerical estimates are carried out for representative coronal conditions. These estimates show that temperature differences of a factor of about two and density differences of ten can be expected in the lower corona even for uniform base conditions. As a result, we do not regard the so-called coronal holes necessairly as locations of reduced mechanical heating. Alternatively, we suggest that they are regions of open magnetic field lines being continuously drained of energy contert by the solar wind expansion and outward thermal conduction.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
K. P. Raju 《Solar physics》2009,255(1):119-129
Relative Doppler velocities and spectral linewidths in a coronal hole and in the quiet Sun region outside have been obtained from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. Five strong emission lines in the CDS wavelength range (namely, O? iii 599 Å, O?v 630 Å, Ne?vi 562.8 Å, He?ii 304 Å, and Mg?ix 368 Å), whose formation temperatures represent different heights in the solar atmosphere from the lower transition region to the inner corona, have been used in the study. As reported earlier, relative velocities in the coronal hole are generally blueshifted with respect to the quiet Sun, and the magnitude of the blueshifts increases with height. It has been found that the polar coronal hole has larger relative velocities than the equatorial extension in the inner corona. Several localized velocity contours have been found mainly on network brightenings and in the vicinity of the coronal hole boundary. The presence of velocity contours on the network may represent network outflows whereas the latter could be due to localized jets probably arising from magnetic reconnection at the boundary. All spectral lines have larger widths in the coronal hole than in the quiet Sun. In O?v 630 Å an extended low-linewidth region is seen in the coronal hole?–?quiet Sun boundary, which may indicate fresh mass transfer across the boundary. Also polar coronal holes have larger linewidths in comparison with the equatorial extension. Together with larger relative velocities, this suggests that the solar wind emanating from polar hole regions is faster than that from equatorial hole regions.  相似文献   

4.
The solar wind ions flowing outward through the solar corona generally have their ionic fractions freeze-in within 5 solar radii. The altitude where the freeze-in occurs depends on the competition between two time scales: the time over which the wind flows through a density scale height, and the time over which the ions achieve ionization equilibrium. Therefore, electron temperature, electron density, and the velocity of the ions are the three main physical quantities which determine the freeze-in process, and thus the solar wind ionic charge states. These physical quantities are determined by the heating and acceleration of the solar wind, as well as the geometry of the expansion. In this work, we present a parametric study of the electron temperature profile and velocities of the heavy ions in the inner solar corona. We use the ionic charge composition data observed by the SWICS experiment on Ulysses during the south polar pass to derive empirically the electron temperature profile in the south polar coronal hole. We find that the electron temperature profile in the solar inner corona is well constrained by the solar wind charge composition data. The data also indicate that the electron temperature profile must have a maximum within 2 solar radii. We also find that the velocities of heavy ions in their freeze-in regions are small (<100 km s-1) and different elements must flow at different velocities in the inner corona.  相似文献   

5.
Delaboudinière  J.P. 《Solar physics》1999,188(2):259-275
A diffuse emission is observed above the solar limb in the 304 Å channel of the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the SOHO spacecraft. Part of this emission is attributed to the presence of residual singly-ionized helium in the solar corona, which resonantly scatters the intense helium Lyman alpha radiation of the chromosphere. This emission can be distinguished from other coronal emissions in the EIT bandpass. Maps of the helium ion density integrated along the line of sight are derived. These agree well with models in the low latitude, closed magnetic field regions of the solar corona. However, the helium ions' abundance seems to be enhanced in the polar, open field regions above coronal holes. This may be related to acceleration processes of the fast solar wind close to the Sun.  相似文献   

6.
It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium. Close to the Sun in regions of strong field, the coronal gas can be contained within closed loop structures. However, since the field in these regions decreases outward rapidly, the pressure and inertial forces of the solar wind eventually dominate and distend the field outward into interplanetary space. The complete geometrical and dynamical state is determined by a complex interplay of inertial, pressure, gravitational, and magnetic forces. The present paper is oriented toward the understanding of this interaction. The helmet streamer type configuration with its associated neutral point and sheet currents is of central importance in this problem and is, therefore, considered in some detail.Integration of the relevant partial differential equations is made tractable by an iterative technique consisting of three basic stages, which are described at length. A sample solution obtained by this method is presented and its physical properties discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Type III solar radio bursts observed from 3.0 to 0.45 MHz with the ATS-II satellite over the period April–October 1967 have been analyzed to derive two alternative models of active region streamers in the outer solar corona. Assuming that the bursts correspond to radiation near the electron plasma frequency, pressure equilibrium arguments lead to streamer Model I in which the streamer electron temperature derived from collision damping time falls off much more rapidly than in the average corona and the electron density is as much as 25 times the average coronal density at heights of 10 to 50 solar radii (R ). In Model II the streamer electron temperature is assumed to equal the average coronal temperature, giving a density enhancement which decreases from a factor of 10 close to the Sun to less than a factor of two at large distances (> 1/4 AU). When the burst frequency drift is interpreted as resulting from the outward motion of a disturbance that stimulates the radio emission, Model I gives a constant velocity of about 0.35c for the exciting disturbance as it moves to large distances, while with Model II, there is a decrease in the velocity to less than 0.2c beyond 10 R .  相似文献   

8.
The large loop or blob-like transient events viewed in the white-light corona are rimmed by broad regions where the density is slightly enhanced above the pre-transient corona. Every one of the Skylab events studied for which sufficiently good Skylab coronagraph coverage is available shows this effect. The upper boundaries of these forerunners blend gradually into the background corona 1 to 2R above the transients' leading edges. In any single event, the coronal mass enhancement represented by the forerunner comprises up to 25% of the total excess mass present in the coronagraph's field of view and includes a much larger volume of the corona than previously attributed to the underlying transient. We have not yet seen a forerunner without an accompanying transient. Clearly, forerunners must be reckoned with in any proposed models of discrete outward coronal mass motions, because they indicate the presence of disturbed corona far ahead of the denser portions of the event.Skylab Solar Workshop Postdoctoral Appointee 1975–78. The Skylab Solar Workshops are sponsored by NASA and NSF and managed by the High Altitude Observatory.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
We report on studies of the 1393 line of Si iv, formed in the transition region at about 80 000 K, made using the Colorado experiment on OSO-8. Results indicate that the line width is somewhat greater in coronal holes compared to the quiet Sun, implying a difference in the broadening mechanism. There is no evidence that the line is Doppler shifted in coronal holes relative to the quiet Sun implying there is no mass flow in holes, at the 80 000 K level, greater than 4.3 km s–1. Within the uncertainty of our experiment the integrated line intensities are the same in a coronal hole as in the quiet Sun.  相似文献   

10.
It is shown that the constancy of the ratio between conductive flux and pressure squared as one goes from quiet regions to holes (regions of exceptionally low density and temperature) in the solar corona, observed in the case of the first well-studied coronal hole, implies that a strong solar wind is likely to originate in coronal holes.On leave of absence from Osservatorio Astrofisico di Arcetri, Florence, Italy.  相似文献   

11.
Bromage  B.J.J.  Alexander  D.  Breen  A.  Clegg  J.R.  Del Zanna  G.  DeForest  C.  Dobrzycka  D.  Gopalswamy  N.  Thompson  B.  Browning  P.K. 《Solar physics》2000,193(1-2):181-193
Coronal holes on the Sun are the source of high-speed solar wind streams that produce magnetic disturbances at the Earth. A series of multi-wavelength, multi-instrument observations obtained during the 1996 Whole Sun Month campaign examined a large coronal hole in greater detail than ever before. It appeared on the Sun in August, and extended from the north pole to a large active region in the southern hemisphere. Its physical and magnetic structure and subsequent evolution are described.  相似文献   

12.
We analysed multifrequency 2-dimensional maps of the solar corona obtained with the Nançay radioheliograph during two solar rotations in 1986. We discuss the emission of the quiet Sun, coronal holes and local sources and its association with chromospheric and coronal features as well as with large-scale magnetic fields. The brightness temperature of the quiet Sun was 5 to 5.5 × 105 K at 164 MHz and 4.5 to 5 × 105 K at 408 MHz. A coronal hole, also detected in the 10830 Å He i line, had a brightness temperature of 4.5 × 105 at 164 and 2.5 × 105 at 408 MHz. We give statistics of source brightness temperatures (on the average 8% above the background at 164 MHz and 14% at 408 MHz), as well as distributions in longitude and latitude. Although we found no significant center-to-limb effect in the brightness temperature, the sources were not visible far from the central meridian (apparently a refraction effect). The brightest sources at 164 MHz were near, but not directly above active regions and had characteristics of faint type I continua. At 408 MHz some sources were observed directly above active regions and one was unambiguously a type I continuum. The majority of the fainter sources showed no association with chromospheric features seen on H synoptic charts, including filaments. Most of them were detected at one frequency only. Sources identified at three frequencies (164, 327, and 408 MHz) were located in regions of enhanced large-scale magnetic field, some of them at the same location as decayed active regions visible one rotation before on synoptic H charts. Multifrequency sources are associated with maxima of the green line corona. The comparison with K-corona synoptic charts shows a striking association of the radio sources with dense coronal regions, associated with the coronal neutral sheet. Furthermore, we detected an enhanced brightness region which surrounds the local sources and is stable over at least one solar rotation. We call this feature a coronal plateau and we identify it with the radio counterpart of the coronal neutral sheet.  相似文献   

13.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

14.
We present observations of a coronal hole made with the EUV spectroheliometer of the Harvard College aboard Skylab and with high resolution (2–4) radio telescopes at Culgoora and Fleurs Australia and Bonn, West Germany. We attempt to derive the density and temperature distributions in the transition region and inner corona from the combined observations. No one standard model can explain both sets of observations; characteristically, models based on EUV data yield higher radio brightnesses than are observed, while models based on radio data yield lower EUV line intensities than are observed. The discrepancy is essentially that the electron density inferred from the EUV data is about three times that inferred from the radio data.After examining several possible modifications of the standard models we suggest that the discrepancy would disappear if the abundances of the heavier elements were increased by about a factor of 10. Such increases could result from differential diffusion in the large temperature gradient of the transition region. We conclude therefore that models which incorporate thermal diffusion, as well as mass outflow and departures from ionization equilibrium, offer the greatest hope of reconciling the EUV and radio observations of coronal holes.  相似文献   

15.
Radio absorption records obtained in or near the zone of totality at two solar eclipses (May 30, 1965 and July 20, 1963) have been examined in detail. It is concluded that all major radio absorption changes during an eclipse are ionization controlled and occur in the D-E layer. Corrections for the ultraviolet sensitivity of the region below 150 kilometers have been applied, so the results indicate effects attributable to the X-ray flux alone. The residual curves clearly show a threshold effect similar to that described by Rastogi et al. (1956) and later by Schmidt and Sharp (1965). Arguments are presented for interpreting this effect in terms of limb configurations involving small, hot X-ray sources similar to that described previously (Meisel, 1968). Once again it is necessary to postulate that grazing incidence reflections from the lunar limb occur. Source positions have been derived from intersections of lunar arcs as seen from different geographic locations.So far, a total of five sources have been identified with reasonable certainty for three eclipses. All the source positions fall within the zones of maximum coronal X-ray intensity predicted by Elwert (1961). Except for one source located very close to the solar limb, all have positions which are well correlated with optical plages. Wien temperatures have been derived from the lunar reflection trends. These show a pronounced correlation with the relative strengths of the 5303 (Fe xiv) and 6374 (Fe x) corona near the source locations. Only the strongest and highest temperature sources correlate well with coronal white light structure.  相似文献   

16.
Global magnetic field calculations, using potential field theory, are performed for Carrington rotations 1601–1610 during the Skylab period. The purpose of these computations is to quantitatively test the spatial correspondence between calculated open and closed field distributions in the solar corona with observed brightness structures. The two types of observed structures chosen for this study are coronal holes representing open geometries and theK-coronal brightness distribution which presumably outlines the closed field regions in the corona. The magnetic field calculations were made using the Adams-Pneuman fixed-mesh potential field code based upon line-of-sight photospheric field data from the KPNO 40-channel magnetograph. Coronal hole data is obtained from AS&E's soft X-ray experiment and NRL's Heii observations and theK-coronal brightness distributions are from HAO'sK-coronameter experiment at Mauna Loa, Hawaii.The comparison between computed open field line locations and coronal holes shows a generally good correspondence in spatial location on the Sun. However, the areas occupied by the open field seem to be somewhat smaller than the corresponding areas of X-ray holes. Possible explanations for this discrepancy are discussed. It is noted that the locations of open field lines and coronal holes coincide with the locations ofmaximum field strength in the higher corona with the closed regions consisting of relatively weaker fields.The general correspondence between bright regions in theK-corona and computed closed field regions is also good with the computed neutral lines lying at the top of the closed loops following the same general warped path around the Sun as the maxima in the brightness. One curious feature emerging from this comparison is that the neutral lines at a given longitude tend systematically to lie somewhat closer to the poles than the brightness maxima for all rotations considered. This discrepancy in latitude increases as the poles are approached. Three possible explanations for this tendency are given: perspective effects in theK -coronal observations, MHD effects due electric currents not accounted for in the analysis, and reported photospheric field strengths near the poles which are too low. To test this latter hypothesis, we artificially increased the line-of-sight photospheric field strengths above 70° latitude as an input to the magnetic field calculations. We found that, as the polar fields were increased, the discrepancy correspondingly decreased. The best agreement between neutral line locations and brightness maxima is obtained for a polar field of about 30 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
A. Hewish  S. Bravo 《Solar physics》1986,106(1):185-200
Observations on a grid of 900 radio sources have been used to map and to track large-scale structures in the solar wind at distances of 0.6–1.5 AU from the Sun. Most of the disturbances were shells of enhanced density followed by high-speed streams lasting for several days, although more stable corotating interaction regions were also observed. Ninety-six disturbances were mapped during August 1978–September 1979 and those of the erupting stream-type were usually accompanied by shocks and geomagnetic activity if they encountered the Earth. Back-projection to the Sun indicated sources that were always associated with coronal holes. Possible associations with solar flares and disappearing filaments occurred but on many occasions no flare or filament activity was evident anywhere on the disc within a suitable time interval. It is concluded that erupting streams are transients generated by coronal hole activity. Evidence is presented which further suggests that coronal mass ejections of the curved-front variety may be identified with these erupting streams.  相似文献   

18.
A correlative study is made between inferred solar sources of high-speed solar wind streams and extended white-light coronal features. The solar wind data used in the study consists of 110 co-rotating high-speed plasma streams observed from spacecraft at 1 AU in the period February 1971-December 1974; the coronal data consists of 144 equatorward extensions of polar coronal holes and 15 equatorial coronal holes, derived fromK-coronometer maps of the white-light corona during the same period. Of 110 observed solar wind streams 88 could directly be associated with an equatorward extension of a polar-cap coronal hole and 14 could be associated with a low-latitude equatorial coronal hole. In 8 cases no visible coronal feature was identified. Of 144 identified polar-cap extensions 102 were associated with a high-speed stream observed at 1 AU; 19 coronal features were related in time to data gaps in the solar wind measurements, while 38 features did not give rise to solar wind streams observed at Earth orbit. The probability of an association depended on the heliographic co-latitude of a polar hole extension, being 50% for a polar lobe extending down to 45° co-latitude and 100% for a polar coronal hole extending to 80° co-latitude or more.Paper presented at the 11th European Regional Astronomical Meeting of the IAU on New Windows to the Univese, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

19.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

20.
A mathematical model for undamped, toroidal, small-amplitude Alfvén waves in a spherically-symmetric or equatorial stellar wind is developed in this paper. The equations are reduced to a very simple form by using real Fourier amplitudes and the ratio of the inward and outward propagating wave amplitudes, which is interpreted as a measure of the relative influence of wave reflection in the flow, on the solution at a given point. Asymptotic solutions at large distances are found to depend only on one parameter, = / P - the ratio of wave frequency and critical (or cutoff) frequency which is a flow characteristic; a = 1 divides solutions into two qualitatively different groups. When 1 the asymptotic (r-) ratio of the inward and outward propagating wave amplitudes does not depend on wave frequency and is equal to unity, while the phase shift between them changes; in this case the wave pattern is a standing wave. If > 1 the converse occurs with the ratio of the amplitudes decreasing rapidly as the frequency increases, and the phase shift equals to -1/2, corresponding to a propagating wave pattern. The result is also expressed in terms of velocity and magnetic field perturbations.Existence of a finite incoming wave amplitude solution at the Alfvén critical point indicates that this point is stable with respect to the perturbations which originate at the critical point and spend an infinite time in its vicinity.Special attention is paid to the applicability of the WKB approximation. It is argued that it can be used only in finite intervals which do not contain the Alfvén critical point, with inward propagating waves taken into account through the boundary conditions. It is shown that despite the presence of reflection, the outward propagating wave amplitude can be described reasonably well by the WKB formula, perhaps with different constants in different regions. In this context = 1 divides solutions which cannot be approximated by the WKB estimate at all at large distances (the first group), from those which can with any given accuracy.As an illustration of the analytical behaviour some numerical results are shown using a cool wind model. These are likely to express qualitatively the features of the Alfvén waves in any stellar wind, since the only assumptions about the flow used in the analytical study of the wave equations were that: the flow has small velocity at the base of the corona; it then passes through the critical point, and reaches its finite non-zero limit at infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号