首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. It maintains salt marsh elevation relative to sea level by the accumulation of aboveground biomass, which promotes sediment deposition and belowground biomass, which accretes as peat. Peat accumulation is particularly important in elevation maintenance at high latitudes where sediment supply tends to be limited. Latitudinal variation in S. alterniflora growth was quantified in eight salt marshes from Massachusetts to South Carolina. The hypothesis that allocation to aboveground and belowground biomass is phenotypically plastic was tested with transplant experiments among a subset of salt marshes along this gradient. Reciprocal transplants revealed that northern S. alterniflora decreased allocation to belowground biomass when grown in the south. Some northern plants also died when moved south, suggesting that northern S. alterniflora may be stressed by future warming. Southern plants that were moved north showed phenotypic plasticity in biomass allocation, but no mortality. Belowground biomass also decomposed more quickly in southern marshes. Our results suggest that warming will lead northern S. alterniflora to decrease belowground allocation and that belowground biomass will decompose more quickly, thus decreasing peat accumulation. Gradual temperature increases may allow for adaptation and acclimation, but our results suggest that warming will lower the ability of salt marshes to withstand sea-level rise.  相似文献   

2.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

3.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

4.
Spartina alterniflora and Spartina densiflora are native salt marsh plants from the Atlantic coast; their habitats in Patos Lagoon estuary (southern Brazil) are characterized by a microtidal regime (<0.5 m) and, during El Niño events, high estuarine water levels and prolonged flooding due to elevated freshwater discharge from a 200,000-km2 watershed. During and between El Niño events, the vegetative propagation of these two Spartina species in the largest estuary of southern Brazil (Patos Lagoon) was evaluated by monitoring transplanted plants for 10 years (short-term study) and interpreting aerial photos of natural stands for 56 years (long-term study). During the short-term study, S. alterniflora quickly occupied mud flats (up to 208 cm year?1) by elongation of rhizomes, whereas S. densiflora showed a modest lateral spread (up to 13 cm year?1) and generated dense circular-shaped stands. However, moderate and strong El Niño events can promote excessive flooding and positive anomalies in the estuarine water level that reduce the lateral spread and competitive ability of S. densiflora. During the long-term study, natural stands of S. alterniflora and S. densiflora had steady lateral spread rates of 152 and 5.2 cm year?1, respectively, over mud flats. In the microtidal marshes of the southwest Atlantic, the continuous long-term lateral expansion of both Spartina species embodies periods of intense flooding stress (moderate and strong El Niños), when there is a decrease of vegetative propagation and less stressful low water periods of fast spread over mud flats (non-El Niño periods and weak intensity El Niños).  相似文献   

5.
Sea level rise is a major stressor on many salt marshes, and its impacts include creek widening, ponding, vegetation dieback, and drowning. Marsh vegetation changes have been associated with sea level rise across southern New England, but most of these studies pre-date the current period of rapidly accelerating sea level rise coupled with episodic events of extreme increases in water levels. Here, we combine data from two salt marsh monitoring and assessment programs in Rhode Island that were designed to assess marsh responses to sea level rise and use these data to document temporal and spatial patterns in marsh vegetation during the current period of extreme water level increases. Vegetation monitoring at two Narragansett Bay salt marshes confirms the ongoing decline of the salt meadow species Spartina patens during this period as it becomes replaced by Spartina alterniflora. Bare ground resulting from vegetation dieback was significantly related to mean high water levels and led to the rapid conversion of mixed Spartina assemblages to S. alterniflora monocultures. A broader spatial assessment of RI marshes shows that S. alterniflora dominance increases at lower elevation marshes toward the mouth of Narraganset Bay. Our data provide additional evidence that S. patens continues to decline in southern New England marshes and show that losses can accelerate during periods of extreme high water levels. Unless adaptive management actions are taken, we predict that marshes throughout RI will continue to lose salt meadow habitat and eventually resemble lower elevation marshes that are already dominated by S. alterniflora monocultures.  相似文献   

6.
Although top-down control of plant growth has been shown in a variety of marine systems, it is widely thought to be unimportant in salt marshes. Recent caging experiments in Virginia and Georgia have challenged this notion and shown that the dominant marsh grazer (the periwinkle,Littoraria irrorata) not only suppresses plant growth, but can denude marsh substrate at high densities. In these same marshes, our field observations suggest that the black-clawed mud crab,Panopeus herbstii, is an abundant and potentially important top-down determinant of periwinkle density. No studies have quantitatively examinedPanopeus distribution or trophic interactions in marsh systems, and its potential impacts on community structure remained unexplored. We investigated distribution and feeding habits ofPanopeus in eight salt marshes along the Mid-Atlantic seashore (Delaware-North Carolina). We found that mud crabs were abundant in tall (4–82 ind m?2), intermediate (0–15 ind m?2), and short-form (0–5 ind m?2)Spartina alterniflora zones in all marshes and that crab densities were negatively correlated with tidal height and positively correlated with bivalve density. Excavation of crab lairs r?utinely produced shells of plant-grazing snails (up to 36 lair?1) and bivalves. Lab experiments confirmed that mud crabs readily consume these abundant marsh molluscs. To experimentally examine potential community effects of observed predation patterns, we manipulated crab and periwinkle densities in a 1-mo field experiment. Results showed thatPanopeus can suppress gastropod abundance and that predation rates increase with increasing snail density. In turn, crab suppression of snail density reduces grazing intensity on salt marsh cordgrass, suggesting presence of a trophic cascade. These results indicate that this previously under-appreciated consumer is an important and indirect determinant of community structure and contribute to a growing body of evidence challenging the long-standing notion that consumers play a minor role in regulating marsh plant growth.  相似文献   

7.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

8.
Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.  相似文献   

9.
Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p?<?0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.  相似文献   

10.
Understanding methane emissions from natural sources is becoming increasingly important with future climactic uncertainty. Wetlands are the single largest natural source of methane; however, little attention has been given to how biota and interactions between aboveground and belowground communities may affect methane emission rates in these systems. To investigate the effects of vegetative disturbance and belowground biogeochemical alterations induced by biota on methane emissions in situ, we manipulated densities of Littoraria irrorata (marsh periwinkle snails) and Geukensia granosissima (gulf ribbed mussels) inside fenced enclosures within a Spartina alterniflora salt marsh and measured methane emissions and sediment extracellular enzyme activity (phosphatase, β-glucosidase, cellobiohydrolase, N-acetyl-β-D-glucosaminidase, peroxidase, and phenol oxidase) over the course of a year. Changes in snail density did not have an effect on methane emission; however, increased densities of ribbed mussels significantly increased the emission of methane. Sediment extracellular enzyme activities for phosphatase, cellobiohydrolase, N-acetyl-β-D-glucosaminidase, and phenol oxidase were correlated to methane emission, and none of the enzymes assayed were affected by the snail and mussel density treatments. While methane emissions from salt marsh ecosystems are lower than those from freshwater systems, the high degree of variability in emission rates and the potential for interactions with naturally occurring biota that increase emissions warrant further investigations into salt marsh methane dynamics.  相似文献   

11.
This two-part study examined the benthic macrofaunal community in Delaware salt marsh impoundments having partial tidal restriction. The first part compared abundance, diversity, and taxonomic composition in three habitat types in impoundments—creeks, vegetated creek banks, and ponds—to those found in natural marshes. Impoundment effects were present but were habitat-specific. Abundances were higher in natural marsh creeks than in impoundment creeks, and diversities were higher in impoundment ponds than in natural marsh ponds. Vegetated bank communities in impoundments were about 50% insects and arachnids and 50% oligochaetes, while natural bank communities were primarily oligochaetes and the polychaeteManayunkia aestuarina. This is likely due to the decrease in flooding of the vegetated high marsh caused by partial impoundment. Pond and creek community composition also showed impoundment effects: in comparison with natural marshes, impoundments had higher proportions of the burrowing anemoneNematostella vectensis, nemerteans, andTubificoides sp. oligochaetes and lower proportions of the oligochaeteClitellio arenarius. The second part of the study compared benthic macrofauna in an impoundment before, during, and after the water level was lowered so that some bottom sediments were exposed and some covered with just a few centimeters of water for several weeks. During this event, macrofaunal abundances were reduced and the community shifted from being dominated by annelids, anemones, and nemerteans toward one dominated by annelids and insects. About 6 wk after reflooding, persistent effects of this disturbance were still suggested by greatly increased abundances and 96% dominance by one species of oligochaete,Paranais litoralis. Impoundment management plans calling for periods of sediment exposure or very low water may want to consider the potential for strong and persistent effects on the macrofaunal community.  相似文献   

12.
Tidal wetlands are affected by sea level rise. In the tidal freshwater stretches of estuaries in the temperate zone, willows (Salix spp.) form tidal freshwater forests above the mean high water level. Willows tolerance to prolonged periodic flooding in riverine systems is well documented, whereas effects of tidal flooding on willows are largely unknown. Flooding stress may play a major role in regeneration failure of willows in tidal forest stands along estuarine shores, and juvenile willows might be specifically affected by partial or total submergence. To assess the tolerance of juvenile willows to tidal flooding, we conducted a mesocosm experiment with cuttings from Salix alba and Salix viminalis, which are both characteristic species for tidal freshwater forests in Europe. Cuttings originating from either fresh or brackish tidal forest stands were grown under four tidal treatments with up to a tidal flooding of 60 cm. A general tolerance to a tidal flooding of 60 cm was observed in chlorophyll fluorescence, growth rates, and biomass production in both willow species. Overall, S. alba showed higher leaf and shoot growth, whereas S. viminalis produced more biomass. S. alba with brackish origin performed worst with increasing tidal flooding, suggesting a possible pre-weakening due to stressful site conditions in tidal wetlands at the estuarine brackish stretch. This study demonstrates that juvenile willows of S. alba and S. viminalis tolerate tidal flooding of up to 60 cm. It is concluded that tidal inundation acts as a stress by causing submergence and soil anaerobiosis, but may also act as a subsidy by reestablishing aerobic conditions and thus maintaining willows performance. Therefore, we suggest investigations on Salix tidal flooding tolerance and possible effects of willows on tidal wetland accretion under estuarine field conditions.  相似文献   

13.
One of the most critical problems facing many deltaic wetlands is a high rate of relative sea-level rise due to a combination of eustatic sea-level rise and local subsidence. Within the Rhône delta, the main source of mineral input to soil formation is from the river, due to the low tidal range and the presence of a continuous sea wall. We carried out field and modeling studies to assess the present environmental status and future conditions of the more stressed sites, i.e.,Salicornia-type marshes with a shallow, hypersaline groundwater. The impacts of management practices are considered by comparing impounded areas with riverine areas connected to the Rhône River. Analysis of vegetation transects showed differences between mean soil elevation ofArthrocnemum fruticosum (+31.2 cm),Arthrocnemum glaucum (+26.5 cm), bare soil (+16.2 cm), and permanently flooded soil (?12.4 cm). Aboveground and belowground production showed that root:shoot ratio forA. fruticosum andA. glaucum was 2.9 and 1.1, respectively, indicating more stressful environmental conditions forA. glaucum with a higher soil salinity and lack of soil drainage. The annual leaf litter production rate of the two species is 30 times higher than annual stem litter production, but with a higher long-term decomposition rate associated with leaves. We developed a wetland elevation model designed to predict the effect of increasing rates of sea-level rise on wetland elevation andSalicornia production. The model takes into account feedback mechanisms between soil elevation and river mineral input, and primary production. In marshes still connected to the river, mineral input decreased quickly when elevation was over 21 cm. Under current sea-level rise conditions, the annual amount of riverine mineral input needed to maintain the elevation of the study marshes is between 3,000 and 5,000 g m?2 yr?1. Simulations showed that under the Intergovernmental Panel on Climate Change best estimate sea-level rise scenario, a mineral input of 6,040 g m?2 yr?1 is needed to maintain marsh elevation. The medium term response capacity of the Rhône deltaic plain with rising sea level depends mainly on the possibility of supplying sediment from the river to the delta, even though the Rhône Delta front is wave dominated. Within coastal impounded marshes, isolated from the river, the sediment supply is very low (10 to 50 g m?2 yr?1), and an increase of sea-level rise would increase the flooding duration and dramatically reduce vegetation biomass. New wetland management options involving river input are discussed for a long-term sustainability of low coastal Mediterranean wetlands.  相似文献   

14.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

15.
New bio-adsorbent carbon materials were synthesized from the leaves and veins of Mucuna pruriens and Manihot esculenta plants, which are locally available in abundance. The synthesized carbons were activated using 0.01N HNO3. Surface area of the activated carbons from M. pruriens and M. esculenta plants was found to be quite high, i.e., 918 and 865 m2/g, respectively. Scanning electron microscopy analysis of the carbons reflects complex disorganized surface structures of different open pore sizes, shapes and dimensions. These properties of the newly synthesized activated carbons led to the development of a sand-supported carbon column, for its possible use in the removal of coliform bacteria and Escherichia coli (E. Coli) from raw water samples. The removal percentage of E. coli was found to be 100% with both the types of carbon adsorbents, as confirmed from the McCardy most probable number table. Similarly, the removal percentage of coliform bacteria was found to be 99 and 98.7% by M. pruriens and M. esculenta carbon columns, respectively. These activated carbons synthesized from locally available plants possess the characteristics of good low-cost adsorbents which can be easily used for the removal of bacteria from water by adsorption method.  相似文献   

16.
Colonial nesting of long-legged wading birds (Ciconiiformes) in the coastal northeastern U.S. is limited primarily to islands, which provide isolated habitats that are relatively free of ground predators. Estuarine wetlands in this heavily developed region, including foraging wetlands and fringe marshes surrounding nesting islands, are often dominated byPhragmites australis. On Pea Patch Island in Delaware Bay, site of one of the largest and most enduring mixed-species heron colonies on the East Coast, wading birds nest inPhragmites marsh habitat as well as in adjacent upland shrubs and trees. BecausePhragmites is aggressively managed in Delaware Bay, we investigated the relative habitat value of marsh and upland nesting sites for the purpose of developing recommendations for marsh and wildlife management. Utilization of marsh habitat by nesting birds ranged from 27–82% during 1993–1998. Two species (great blue heronArdea herodias and great egretA. alba) never nested inPhragmites, four species (little blue heronEgretta caerulea, snowy egretE. thula, cattle egretBubulcus ibis, and black-crowned night-heronNycticorax nycticorax) nested in approximately equal proportions in both habitats, and one species (glossy ibisPlegadis falcinellus) was largely confined to marsh nesting. Productivity (egg and nestling production) varied between habitats for some species. Cattle egrets produced larger clutches and had higher hatching rates inPhragmites compared to upland habitat. Little blue herons were more successful in the uplands. Managers should retainPhragmites marsh at colony sites, such as Pea Patch Island, where it provides critical habitat for nesting wading birds both as substrate for nesting and buffer habitat to control human disturbance.  相似文献   

17.
We assess the probability and importance of different spatial distributions ofPhragmites australis (Trin Ex Steud) within brackish tidal marshes of the mid-Atlantic United States coast. The comparative impact ofPhragmites expansion on the larger coupled marsh-estuary system may partially be a function of the landscape area dominated byPhragmites, the landscape position occupied byPhragmites, the landscape pattern created byPhragmites expansions, and the resulting impact on tidal drainage networks. We find evidence thatPhragmites establishment can occur at many landscape positions, and thatPhragmites spread within a marsh can occur via colonization (new patches), linear clonal growth (along a preferred axis), or circular clonal growth (non-directional, random spread). Early intervals ofPhragmites spread were dominated by colonization for all sites except for Piermont Marsh (which appeared to be dominated by linear clonal growth) and Lang Tract (which appeared to be dominated by circular clonal growth). Although 46–100% of new patches ofPhragmites occurred within 5 m of drainages, at only one site (Piermont Marsh, New York) didPhragmites populations remain concentrated along creek banks. Except for Iona Island, New York, which appears to be in an early stage ofPhragmites invasion, patch dynamics at all sites showed an increase followed by a decrease in patch number, as independent patches became established, expanded, and coalesced. We also found some evidence for a loss of first order streams at later stages ofPhragmites invasions in several sites (Hog Island, Lang Tract, Silver Run).  相似文献   

18.
Water inflow into deep excavations is a key parameter in the evaluation of environmental impact, and a simplified method is needed to calculate the inflow with adequate accuracy, especially for a deep excavation with a cutoff wall around it. This paper presents a model for calculating inflow based on the method of fragments, assuming two-dimensional sectional flow. The effects of cutoff wall thickness (w), wall penetration, and excavation width on the inflow are well considered in this model. Explicit formulas for the form factor are given. The accuracy and scope of this method are discussed. The method can be applied in both flooding and no flooding cases. Extensive verification shows that, for the flooding case and when one of four conditions is satisfied, the error of the proposed method will be within 10%. These conditions are b/d?≥?0.8 or w/d?≥?0.03 or s/d?≥?0.2 or s1/d?≥?0.2, for which b is the half width of the excavation, d is the thickness of the soil layer underlying the wall, and s and s1 are the wall penetration depths on the non-excavation side and excavation side, respectively. For the case of no flooding and when the ratio of the distance from the recharge boundary to the aquifer thickness (a/T) is?≥2, the error does not exceed 15%.  相似文献   

19.
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia. Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the above-mentioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators.  相似文献   

20.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号