首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
During the last glacial cycle an intriguing feature of the British-Irish Ice Sheet was the North Sea Lobe (NSL); fed from the Firth of Forth and which flowed south and parallel to the English east coast. The controls on the formation and behaviour of the NSL have long been debated, but in the southern North Sea recent work suggests the NSL formed a dynamic, oscillating terrestrial margin operating over a deforming bed. Further north, however, little is known of the behaviour of the NSL or under what conditions it operated. This paper analyses new acoustic, sedimentary and geomorphic data in order to evaluate the glacial landsystem imprint and deglacial history of the NSL offshore from NE England. Subglacial tills (AF2/3) form a discontinuous mosaic interspersed with bedrock outcrops across the seafloor, with the partial excavation and advection of subglacial sediment during both advance and retreat producing mega-scale glacial lineations and grounding zone wedges. The resultant ‘mixed-bed’ glacial landsystem is the product of a dynamic switch from a terrestrial piedmont-lobe margin with a net surplus of sediment to a partially erosive, quasi-stable, marine-terminating, ice stream lobe as the NSL withdrew northwards. Glaciomarine sediments (AF4) drape the underlying subglacial mixed-bed imprint and point to a switch to tidewater conditions between 19.9 and 16.5 ka cal BP as the North Sea became inundated. The dominant controls on NSL recession during this period were changing ice flux through the Firth of Forth ice stream onset zone and water depths at the grounding line; the development of the mixed-bed landsystem being a response to grounding line instability. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
The timing of glacial advances, periglacial phenomena, and the ages of two marker tephras in northern Hokkaido were estimated by OSL dating. It appears that the glacier of Yamunai 2 stage on Rishiri Island expanded between 24 and 15 ka. In northern Hokkaido, OSL ages indicate ice wedge formation during the period 24–18 ka. These results indicate that both the glacial advance and the development of ice wedges were synchronous phenomena relating to the Last Glacial Maximum.  相似文献   

3.
Some areas within ice sheet boundaries retain pre-existing landforms and thus either remained as ice free islands (nunataks) during glaciation, or were preserved under ice. Differentiating between these alternatives has significant implications for paleoenvironment, ice sheet surface elevation, and ice volume reconstructions. In the northern Swedish mountains, in situ cosmogenic 10Be and 26Al concentrations from glacial erratics on relict surfaces as well as glacially eroded bedrock adjacent to these surfaces, provide consistent last deglaciation exposure ages (∼8-13 kyr), confirming ice sheet overriding as opposed to ice free conditions. However, these ages contrast with exposure ages of 34-61 kyr on bedrock surfaces in these same relict areas, demonstrating that relict areas were preserved with little erosion through multiple glacial cycles. Based on the difference in radioactive decay between 26Al and 10Be, the measured nuclide concentration in one of these bedrock surfaces suggests that it remained largely unmodified for a minimum period of 845−418+461 kyr. These results indicate that relict areas need to be accounted for as frozen bed patches in basal boundary conditions for ice sheet models, and in landscape development models. Subglacial preservation also implies that source areas for glacial sediments in ocean cores are considerably smaller than the total area covered by ice sheets. These relict areas also have significance as potential long-term subglacial biologic refugia.  相似文献   

4.
Recent satellite observations of the Antarctic and Greenland ice sheets show accelerated ice flow and associated ice sheet thinning along coastal outlet glaciers in contact with the ocean. Both processes are the result of grounding line retreat due to melting at the grounding line (the grounding line is the contact of the ice sheet with the ocean, where it starts to float and forms an ice shelf or ice tongue). Such rapid ice loss is not yet included in large-scale ice sheet models used for IPCC projections, as most of the complex processes are poorly understood. Here we report on the state-of-the art of grounding line migration in marine ice sheets and address different ways in which grounding line migration can be attributed and represented in ice sheet models. Using one-dimensional ice flow models of the ice sheet/ice shelf system we carried out a number of sensitivity experiments with different spatial resolutions and stress approximations. These are verified with semi-analytical steady state solutions. Results show that, in large-scale finite-difference models, grounding line migration is dependent on the numerical treatment (e.g. staggered/non-staggered grid) and the level of physics involved (e.g. shallow-ice/shallow-shelf approximation).  相似文献   

5.
Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum: complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to 3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD is addressed through a combination of marine core analysis, iceberg trajectory modelling and remote sensing of glacial geomorphology. We find compelling evidence for two stages of glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial, with ice extent intermediate in size between previous maximum and minimum reconstructions. Furthermore, a significant increase in iceberg flux precedes, and accompanies, a substantial marine core ash deposit at around 40 ka BP. We speculate that rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity.  相似文献   

6.
On the high altitude polar plateau of Amundsenisen, western Dronning Maud Land, East Antarctica, a subglacial valley, with a broad horizontal valley floor interpreted as a sediment floodplain or valley delta, was studied by radio echo sounding. In addition, a small, probably glacial, valley was mapped within the same subglacial massif. Basal ice temperatures were calculated using field data on precipitation, air temperature and ice sheet thickness. Discoveries of old landforms which have been preserved more or less intact beneath the former Fennoscandian and Laurentide ice sheets have received increasing attention during the last decade. The aim of this study is to investigate whether preservation of landforms occurs under the East Antarctic Ice Sheet, and to discuss under that climatological and glaciological circumstances preservation may take place. The results show that the ice sheet covering the investigated localities is frozen to bed, and therefore has an insignificant erosional capability. The observations suggest that a large-scale subglacial sediment deposit and a small valley formed by glacial erosion have survived beneath a cold-based ice sheet marginal zone for a long time period. The process of glacial preservation, recognized for bedrock features and tentatively observed for sediment accumulations, should act on similar large-scale landforms under any cold-based ice sheet, present or past. On the basis of existing studies of the age and stability of the East Antarctic Ice Sheet, a Middle Pliocene age is suggested for the preserved landforms. The presence of the presumed sediment-filled valley further indicates that no prolonged periods of basal melting have occurred at the Amundsenisen study area during the ice sheet history, which includes the Quaternary glaciation periods. Finally, calculations of basal temperature for localities at different altitudes within the same subglacial massif were used to demonstrate local altitudinal control of glacial preservation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
New imagery of ~14 100 km2 of seafloor along a 640 km stretch of the Alaska and Beaufort margins (ABM) in water depths from 250 to 2800 m depicts a repetitive association of glaciogenic bedforms (lineations and iceberg scours), broad erosional bathymetric features and adjacent downslope turbidite gullies. These bedforms have styles, depths and orientations similar to features discovered earlier on the Chukchi Borderland, up to 800 km northwest of the ABM. Lineations occur across the surface of a flattened bathymetric bench interpreted to have formed by an ice shelf sliding along the continental slope and scraping the seafloor at temporary grounding locations. The glacial geology of surrounding areas suggests that an ice shelf probably flowed from the mouths of overdeepened glacial troughs in the Canadian Arctic Archipelago westward along the ABM and across the Chukchi Borderland. This curved pathway indicates an obstruction to ice flow in the central Canada Basin, possibly caused by either a basin‐wide ice shelf or by a pile‐up of mega‐bergs originating from the Eurasian side of the Arctic Ocean. The ice shelf that affected the ABM may have formed between Oxygen Isotopic Stage 4 to 5b, possibly correlating to an inferred intra‐Stage 5 widespread Beringian glaciation. Evidence for glaciogenic features on the ABM corroborates suggestions that large ice volumes and extents existed in the Arctic during Pleistocene glacial periods. These findings have far‐reaching implications for Arctic climate studies, ocean circulation, sediment stratigraphy and the stability of circum‐Arctic continental ice masses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Late Pleistocene sequences around Dundalk Bay, eastern Ireland, record glaciomarine sedimentation near the margin of a grounded ice lobe around 15 ka BP. A coastal exposure at Cooley Point consists of four major facies deposited outside this ice limit. (1) A basal mud facies deposited from sediment plumes accumulated following the initial ice marginal retreat inland. It contains a well-preserved Arctic microfauna dominated by the foram Elphidium clavatum and the ostracod Roundstonia globulifera. (2) A flat to undulating boulder facies (pavement), mostly one clast thick, is found pressed into the mud and is characterized by bevelled and striated upper clast surfaces. Pavement attributes are a result of intertidal activity in a cold climate. The boulder source is due to rafting by ice floes from glacigenic debris deposited during an ice advance. (3) Laminated sand facies drape the pavement and are a result of variable current activity. (4) The overlying gravel facies is separated from the sand facies by a marine erosion surface. The gravel facies is subaqueous, channelized and is overlain by late glacial raised beach ridges. Locally the gravels have been deformed by ice pressure from partially floating ice floes. Facies changes record terrestrial submergence and provide evidence for changes in relative sea level during part of the last deglacial cycle. The boulder pavement and deformed gravel facies suggest that ice floes and sea ice effects may be more common within stratigraphies along emergent coasts than previously thought, though they have a low preservation potential. Extreme conditions during the deglacial favoured opportunistic microfaunas during mud deposition. This event may be related to a major meltwater event within the Irish Sea Basin.  相似文献   

12.
Many glacial deposits in the Quartermain Mountains, Antarctica present two apparent contradictions regarding the degradation of unconsolidated deposits. The glacial deposits are up to millions of years old, yet they have maintained their meter‐scale morphology despite the fact that bedrock and regolith erosion rates in the Quartermain Mountains have been measured at 0·1–4·0 m Ma?1. Additionally, ground ice persists in some Miocene‐aged soils in the Quartermain Mountains even though modeled and measured sublimation rates of ice in Antarctic soils suggest that without any recharge mechanisms ground ice should sublimate in the upper few meters of soil on the order of 103 to 105 years. This paper presents results from using the concentration of cosmogenic nuclides beryllium‐10 (10Be) and aluminum‐26 (26Al) in bulk sediment samples from depth profiles of three glacial deposits in the Quartermain Mountains. The measured nuclide concentrations are lower than expected for the known ages of the deposits, erosion alone does not always explain these concentrations, and deflation of the tills by the sublimation of ice coupled with erosion of the overlying till can explain some of the nuclide concentration profiles. The degradation rates that best match the data range 0·7–12 m Ma?1 for sublimation of ice with initial debris concentrations ranging 12–45% and erosion of the overlying till at rates of 0·4–1·2 m Ma?1. Overturning of the tills by cryoturbation, vertical mixing, or soil creep is not indicated by the cosmogenic nuclide profiles, and degradation appears to be limited to within a few centimeters of the surface. Erosion of these tills without vertical mixing may partially explain how some glacial deposits in the Quartermain Mountains maintain their morphology and contain ground ice close to the surface for millions of years. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Kuannersuit Glacier, a valley glacier on Disko Island in west Greenland, experienced a major surge from 1995 to 1998 where the glacier advanced 10·5 km and produced a ~65 m thick stacked sequence of debris‐rich basal ice and meteoric glacier ice. The aim of this study is to describe the tectonic evolution of large englacial thrusts and the processes of basal ice formation using a multiproxy approach including structural glaciology, stable isotope composition (δ18O and δD), sedimentology and ground‐penetrating radar. We argue that the major debris layers that can be traced in the terminal zone represent englacial thrusts that were formed early during the surge. Thrust overthrow was at least 200–300 m and this lead to a 30 m thick repetition of basal ice at the ice margin. It is assumed that the englacial thrusting was initiated at the transition between warm ice from the interior and the cold snout. The basal debris‐rich ice was mainly formed after the thrusting phase. Two sub‐facies of stratified basal ice have been identified; a lower massive ice facies (SM) composed of frozen diamict enriched with heavy stable isotopes overlain by laminated ice facies (SL) consisting of millimetre thick lamina of alternating debris‐poor and debris‐rich ice. We interpret the stratified basal ice as a continuum formed mainly by freeze‐on processes and localized regelation. First laminated basal ice is formed and as meltwater is depleted more sediment is entrained and finally the glacier freezes to the base and massive diamict is frozen‐on. The increased ability to entrain sediments may partly be associated with higher basal freezing rates enhanced by loss of frictional heat from cessation of fast flow and conductive cooling through a thin heavily crevassed ice during the final phase of the glacier surge. The dispersed basal ice facies (D) was mainly formed by secondary processes where fine‐grained sediment is mobilized in the vein system of ice. Our results have important implications for understanding the significance of basal ice formation and englacial thrusting beneath fast‐flowing glaciers and it provides new information about the development of landforms during a glacier surge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A comparison of the oxygen isotope signal in deep-sea benthic foraminifera with the record of glacio-eustatic sea level for the last 160,000 years reveals that the amplitude of the benthic δ18O records predicts more continental ice volume than appears to be reflected in lowered sea level stands. These differences between the benthic δ18O ice volume estimates and radiometrically-dated records of eustatic sea level are consistent with the presence of a large floating Arctic Ocean ice mass during glacial intervals. The presence of an Arctic Ocean ice sheet during glacial intervals may account for the two climatic modes observed in oxygen isotope records which span the entire Pleistocene. The early Pleistocene (1.8 to 0.9 Myr B.P.) interval is characterized by low-amplitude, high-frequency δ18O fluctuations between glacial and interglacial periods, while the late Pleistocene (0.9 Myr B.P. to present) is characterized by large-amplitude, low-frequency δ18O changes. These two climatic modes can be explained by the initiation of earth orbital conditions favoring the co-occurrence of glacial period Arctic Ocean ice sheets and large continental ice sheets approximately 900,000 years before present.  相似文献   

17.
The widely accepted age estimate for the onset of glaciation in the Northern Hemisphere ranges between 2 and 15 million years ago (Ma). However, recent studies indicate the date for glacial onset may be significantly older. We report the presence of ice-rafted debris (IRD) in ~ 44 to 30 Ma sediments from the Greenland Sea, evidence for glaciation in the North Atlantic during the Middle Eocene to Early Oligocene. Detailed sedimentological evidence indicates that glaciers extended to sea level in the region, allowing icebergs to be produced. IRD may have been sourced from tidewater glaciers, small ice caps, and/or a continental ice sheet.  相似文献   

18.
This article describes the characteristics of debris obtained from the basal ice in a borehole in the Agassiz ice cap, Ellesmere Island, Northwest Territories by the Canadian Polar Continental Shelf Project in 1979. The debris appears to have been incorporated by basal freezing at a time when the base of the glacier upstream was near the pressure melting point and some 19°C warmer than at the present site. Such an occurrence may be explained by a different flow regime, by a thicker ice sheet, by the influence of irregular bedrock topography on basal ice conditions at some stage in the past, or by a combination of these factors.  相似文献   

19.
Abstract

Stability of two-dimensional stationary continental and marine ice sheets is studied using perturbations of ice sheet surface elevation and the margin position about a steady-state solution. Ice accumulation rate at the upper surface is specified as a function of elevation and span. Ice is considered as a Newtonian fluid. Linearisation and separation of variables yield a non-homogeneous eigenvalue problem. In case when the margin moves, a necessary condition for the existence of a solution is very restrictive on the functions of the bed profile and accumulation rate. The method of separation of variables is applicable when the margin is assumed to be stationary. Singularity of the perturbation at the margin is treated using the method of matched asymptotic expansions. Numerical experiments show that dependence of accumulation rate on elevation contributes strongly towards ice sheet instability. Bed slope, ice thickness at the grounding line of a marine ice sheet and equilibrium line inclination are the main parameters determining the ice sheet reaction to a surface perturbation.  相似文献   

20.
In Southern Ocean sediments south of the Antarctic Polar Front, the scarcity of calcareous microfossils hampers the development of sediment chronologies based on radiocarbon dating and oxygen isotope stratigraphy established from carbonate. In this study, radiometric dating, magnetic susceptibility (MS), biogenic opal content, diatom abundance fluctuation, and paleomagnetic information were investigated on a north–south transect of central Scotia Sea sediment cores to verify their reliability as stratigraphic tools in the study area. Radiocarbon dating on organic carbon humic acid fraction can be used to establish the stratigraphy of upper core sections, but regional comparison and correlation are needed to verify a possible bias by fossil carbon contamination. For the long-term stratigraphy, MS, which can be correlated to the Antarctic ice core dust/climate signal, represents the most valuable parameter. Fine-grained single domain magnetite, probably of biogenic origin, makes a significant contribution to the interglacial MS signal, while major contributions from detrital material affect the glacial MS record. The core from the southern Scotia Sea contains significant proportions of biogenic magnetite also in glacial sediments, suggesting depositional environments different from those of the northern Scotia Sea. Our data suggest low contributions of high-coercive minerals to the overall magnetic intensity of glacial and interglacial Scotia Sea sediments, which excludes dust as a main source of the magnetic signal. Opal content can be used to distinguish between cold and warm intervals for the past 300 thousand years. Abundance fluctuation patterns of diatom species Fragilariopsis kerguelensis and Eucampia antarctica are useful stratigraphic tools for periods back to Marine Isotope Stage (MIS) 6. The Mono Lake geomagnetic excursion is identified in Scotia Sea sediments for the first time. Possible correlations of ash layers are suggested between Scotia Sea sediments and East Antarctic ice cores. They have potential to serve as additional age markers for further studies in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号