首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caddisfly (Trichoptera) larvae are an abundant and widespread aquatic insect group characterized by the construction of silk structures, including nets and cases. Case-building caddisfly have the potential to modify the sorting and mobility of sand and fine gravel via: (1) case construction, resulting in altered sediment properties; (2) transporting sediment incorporated into cases over the river bed; and (3) changing the structure of river beds via burrowing activity. To investigate these mechanisms, it is necessary to understand the mass, size distribution and spatial variability of sediment use by case-building caddisfly larvae. We quantified the mineral sediment used by individuals and communities of case-building caddisfly in 27 samples, from three sites on a gravel-bed stream. The mass and size distribution of sediment in individual cases varied between taxa (mass = 0.001–0.83 g, D50 = 0.17–4 mm). The mean mass of sediment used by the caddisfly community was 38 g m−2 and varied locally. Sediment use was predominantly coarse sand (D50 = 1 mm). 64% of sediment use was attributable to Agapetus fuscipes (Glossosomatidae). Due to within-species variability in case mass, the abundance of most taxa, including A. fuscipes, was only weakly associated with the mass of sediment used by this species, at the river scale. Whilst the caddisfly community used a small percentage of the total sediment available (average 2.99% of the 1–1.4 mm size fraction), A. fuscipes used more fine sediment in their cases at sites where it was more available. Despite variability in local habitat, all sites supported diverse case-building caddisfly communities utilizing mineral sediment. Consequently, geomorphological effects of case-building caddisfly are potentially widespread. The results provide novel insights into the specific grain sizes and quantities of fine sediment used by caddisfly larvae, which represents an important step towards understanding their zoogeomorphic activities. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

2.
This study investigates trends in bed surface and substrate grain sizes in relation to reach‐scale hydraulics using data from more than 100 gravel‐bed stream reaches in Colorado and Utah. Collocated measurements of surface and substrate sediment, bankfull channel geometry and channel slope are used to examine relations between reach‐average shear stress and bed sediment grain size. Slopes at the study sites range from 0·0003 to 0·07; bankfull depths range from 0·2 to 5 m and bankfull widths range from 2 to 200 m. The data show that there is much less variation in the median grain size of the substrate, D50s, than there is in the median grain size of the surface, D50; the ratio of D50 to D50s thus decreases from about four in headwater reaches with high shear stress to less than two in downstream reaches with low shear stress. Similar trends are observed in an independent data set obtained from measurements in gravel‐bed streams in Idaho. A conceptual quantitative model is developed on the basis of these observations to track differences in bed load transport through an idealized stream system. The results of the transport model suggest that downstream trends in total bed load flux may vary appreciably, depending on the assumed relation between surface and substrate grain sizes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The mass and size distribution of grain entrainment per unit bed area may be measured by replacing a volume of the bed with tracer gravels and observing the mass difference before and after a transport event. This measure of spatial entrainment is relevant to any process involving size-selective exchange of sediment between transport and bed and may be directly used in calculations of sediment transport rate using an elementary relation for fractional transport components presented here. This relation provides a basis for evaluating tracer data collected by different methods and may be used to provide physical insight regarding the expected behaviour of tracer grains. The variation with grain size of total displacement length Lti depends on the degree of mobilization of the individual fractions on the bed surface: Lti is independent of Di for smaller, fully mobile sizes and decreases rapidly with Di for larger fractions in a state of partial transport (in which a portion of the surface grains remain immobile through the flow event). The boundary between fully and partially mobile grain sizes increases with flow strength. These inferences are supported by values of Lti calculated from flume experiments and provide a physical explanation for a summary relation between Lti and Di based on field data. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Some unique coupled wind–water erosion processes exist in the desert-loess transitional zone in the middle Yellow River basin. Based on data from 40 stations on 29 rivers, a study was made on the influence of such processes on suspended sediment grain-size characteristics of the tributaries of the Yellow River. Results show that the percentage of >0.05-mm grain size decreases with the increased annual mean precipitation, but increases with the increase in the annual mean number of sand-dust storm days. The percentage of <0.01-mm grain size increases with the increase in the annual mean precipitation, but decreases with the increase in the annual number of sand-dust storm days. Based on annual mean data from 40 stations, multiple regression equations were established between the percentages of >0.05-mm grain size (r >0.05) and <0.01-mm grain size (r <0.01), annual mean precipitation (P m) and annual mean number of sand-dust storm days (D ss). On this basis, the relative contributions of the variations in D ss and P m to the variation in r >0.05 and r <0.01 were estimated. The results indicate that the variation in sand-dust storm frequency exerts greater influences on the variation in grain-size characteristics of suspended load than does the variation in annual mean precipitation. With the increase in the coupled wind–water processes index, expressed by P m/D ss, the percentage of >0.05-mm grain size in suspended sediment decreases and the percentage of <0.01-mm grain size increases. With the variation in P m/D ss, different combinations of r >0.05 with r <0.01 appear, which have some influence on the formation of hyperconcentrated flows. There exist some optimal ratios of coarse to fine fractions in suspended sediment that make sediment concentrations of hyperconcentrated flows the highest. The optimal r >0.05/r <0.01 value is related to some range of the index P m/D ss. When the P m/D ss index falls in this range, the optimum combination of relative coarse with fine sediments in the suspended load appears, and thus results in the peak values of sediment concentration.  相似文献   

6.
Based on data from 35 stations on the tributaries of the Yellow River, annual specific sediment yield (Ys) in eight grain size fractions has been related to basin‐averaged annual sand–dust storm days (Dss) and annual precipitation (Pm) to reveal the influence of eolian and fluvial processes on specific sediment yield in different grain size fractions. The results show that Ys in fine grain size fractions has the highest values in the areas dominated by the coupled wind–water process. From these areas to those dominated by the eolian process or to those dominated by the fluvial process, Ys tends to decrease. For relatively coarse grain size fractions, Ys has monotonic variation, i.e. with the increase in Dss or the decrease in Pm, Ys increases. This indicates that the sediment producing behavior for fine sediments is different from that for relatively coarse sediments. The results all show that Ys for relatively coarse sediments depends on the eolian process more than on the fluvial process, and the coarser the sediment fractions the stronger the dependence of the Ys on the eolian process. The YsDss and YsPm curves for fine grain size fractions show some peaks and the fitted straight lines for YsDss and YsPm relationships for relatively coarse grain size fractions show some breaks. Almost all these break points may be regarded as thresholds. These thresholds are all located in the areas dominated by the coupled wind–water process, indicating that these areas are sensitive for erosion and sediment production, to which more attention should be given for the purpose of erosion and sediment control. A number of regression equations were established, based which the effect of rainfall, sand–dust storms and surface material grain size on specific sediment yield can be assessed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Recent research has started to focus on how prolonged periods of sub‐threshold flows may be capable of imparting structural changes that contribute to increased bed stability. To date, this effect (termed ‘stress history’) has been found to be significant in acting to increase a bed's critical shear stress at entrainment threshold. However, it is supported by only limited, qualitative and often speculative information on the mechanisms of this stabilization process in grade‐specific studies. As such, this paper uses high resolution laser scanning to quantitatively ascertain the granular mechanics underpinning the relationship between stress history and entrainment threshold for beds of a range of grain size distributions. Employing a bed slope of 1/200, three grain size distributions with median grain sizes (D50) of 4·8 mm [uniform (σg = (D84/D16)0.5 = 1·13; bimodal (σg = 2·08); and, unimodal (σg = 1·63)] were exposed to antecedent stress histories of 60 and 960 minutes duration. Antecedent shear stress magnitude was set at 50% of the critical shear stress for the D50 when no stress history period was employed. Two laser displacement scans of the bed surface (approximate area 100 mm × 117 mm) were taken, one prior to the antecedent period and one after this period, so that changes to surface topography could be quantified (resolution of x = 0·10 mm, y = 0·13 mm and z = 0·24 mm). Rearrangement of bed surface structure is described using statistical analysis and two‐dimensional (2D) semi‐variograms to analyse scaling behaviour. Results reveal vertical settlement, changes to bed roughness and particle repositioning. However, the bed grain size distribution influences the relative importance of each mechanism in determining stress history induced bed stability; this is the focus of discussion in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A series of laboratory flume experiments under conditions of sediment starvation (zero sediment feeding) and recirculation were conducted in order to identify the temporal evolution and surface properties of static and mobile armour layers. The experiments were carried out in an 8 m long flume using a bimodal grain‐size mixture (D50 = 6·2 mm) and a range of shear stresses ranging from 4·0 to 8·6 N m–2. The results confirm that a static armour layer is coarser than a mobile one, and that the grain size of a mobile armour layer is rather insensitive to changes in the imposed flow strength. An analysis of laser scan bed surveys revealed the highly structured and imbricated nature of the static armour layer. Under these conditions the vertical roughness length scale of the bed diminished and it became topographically less complex at higher forming discharges. The topography of mobile armour layers created by rising discharges differed. They exhibited a greater roughness length scale and were less organized, despite the fact that the grain size of the surface material maintained an approximately constant value during recirculation. Also, the mobile armour tended to create larger cluster structures than static armour layers when formed by higher discharges. These differences were mainly due to the transport of the coarser fraction of bed sediments, which diminished to zero over the static armour because of being hidden within the bed, whereas in the mobile armour the coarser particles protruded into the flow and were actively transported, increasing the vertical roughness length scale. Overall, the results show that an examination of the grain size characteristics of armour layers cannot be used to infer sediment mobility and bed roughness. Detailed elevation models of exposed surfaces of gravel‐bed rivers are required to provide critical insight on the sediment availability and sedimentation processes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Bedload transport data from planebed and step‐pool reach types are used to determine grain size transport thresholds for selected upland streams in southeast Australia. Morphological differences between the reach types allow the effects of frictional losses from bedforms, microtopography and bed packing to be incorporated into the dimensionless critical shear stress value. Local sediment transport data are also included in a regime model and applied to mountain streams, to investigate whether empirical data improve the delineation of reach types on the basis of dimensionless discharge per unit width (q*) and dimensionless bedload transport (qb*). Instrumented planebed and step‐pool sites are not competent to transport surface median grains (D50s) at bankfull discharge (Qbf). Application of a locally parametrized entrainment equation to the full range of reach types in the study area indicates that the majority of cascades, cascade‐pools, step‐pools and planebeds are also not competent at Qbf and require a 10 year recurrence interval flood to mobilize their D50s. Consequently, the hydraulic parameters of the regime diagram, which assume equilibrium conditions at bankfull, are ill suited to these streams and provide a poor basis of channel delineation. Modifying the diagram to better reflect the dominant transported bedload size (equivalent to the D16 of surface sediment) made only slight improvements to reach delineation and had greatest effect on the morphologies with smaller surface grain sizes such as forced pool‐riffles and planebeds. Likewise, the Corey shape factor was incorporated into the regime diagram as an objective method for adjusting a base dimensionless critical shear stress (τ*c50b) to account for lithologically controlled grain shape on bed packing and entrainment. However, it too provided only minor adjustments to reach type delineation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Lowland permeable catchments in the UK are particularly prone to sedimentation problems, on account of the increased fine sediment loadings generated by recent land‐use change and their stable seasonal hydrological regimes, which are frequently depleted by groundwater abstraction. Fine‐grained sediment storage on the bed of the main channel systems of the Frome (437 km2) and Piddle (183 km2) catchments, Dorset, UK, has been examined at 29 sites using a sediment remobilization technique. Measurements encompassed the period February 2003–July 2004. At individual sites in the Frome, average values ranged between 410 and 2630 g m?2, with an overall mean of 918 g m?2. In the Piddle, the average values for individual sites varied between 260 and 4340 g m?2, with an overall mean of 1580 g m?2. Temporal variations in fine bed sediment storage at each site were appreciable, with the coefficients of variation ranging between 43 and 155% in the Frome and between 33 and 160% in the Piddle. Average reach‐scale specific bed sediment storage increased markedly downstream along each main stem from 2 to 29 t km?1 (Frome) and from 4 to 19 t km?1 (Piddle). Total fine sediment storage on the channel bed of the Frome varied between 479 t (5 t km?1) and 1694 t (17 t km?1), with a mean of 795 t (7 t km?1), compared with between 371 t (5 t km?1) and 1238 t (14 t km?1) with a mean of 730 t (9 t km?1) in the Piddle. During the study period, fine bed sediment storage was typically equivalent to 18% (Frome) and 57% (Piddle) of the mean annual suspended sediment flux at the study catchment outlets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment transport of four boulder bed rivers is studied using lichenometry. The presence of lichens on boulders in the river channel is used to date the last mobilization of the blocks. Using size frequency diagrams and regional growth curves calibrated with dated reference points it is possible to determine the flood event responsible for the last mobilization of each boulder with lichens present. The specific stream power of flood events over the last 60 years is then calculated, and thresholds of sediment transport based on the sediment size are calculated. The results from the four studied rivers are compared to similar relationships in the literature. Sediment motion thresholds appear to be very variable within the same type of river (mountainous boulder bed rivers). The critical specific stream power necessary to mobilize a particle of a given diameter may vary by up to 10 times from one river to the next. Bed sediment size and river slope may explain this large range of stream powers. Calculation of the relative size of the transported particles (Di/D50) also shows that both hiding and protrusion effects, as well as channels slope, are important factors in sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μmμm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress.  相似文献   

17.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer–Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval Δx and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.  相似文献   

19.
A model was developed and analyzed to quantify the effect of graded sediment on the formation of tidal sand ridges. Field data reveal coarse (fine) sediment at the crests (in the troughs), but often phase shifts between the mean grain-size distribution and the bottom topography occur. Following earlier work, this study is based on a linear stability analysis of a basic state with respect to small bottom perturbations. The basic state describes an alongshore tidal current on a coastal shelf. Sediment is transported as bed load and dynamic hiding effects are accounted for. A one-layer model for the bed evolution is used and two grain size classes (fine and coarse sand) are considered. Results indicate an increase in growth and migration rates of tidal sand ridges for a bimodal mixture, whilst the wavelength of the ridges remains unchanged. A symmetrical externally forced tidal current results in a grain-size distribution which is in phase with the ridges. Incorporation of an additional external M4 tidal constituent or a steady current results in a phase shift between the grain-size distribution and ridge topography. These results show a general agreement with observations. The physical mechanism responsible for the observed grain-size distribution over the ridges is also discussed.Responsible Editor: Jens Kappenberg  相似文献   

20.
Estimates of the wind shear stress exerted on Earth's surface using the fully rough form of the law‐of‐the‐wall are a function of the aerodynamic roughness length, z0. Accurate prediction of aeolian sediment transport rates, therefore, often requires accurate estimates of z0. The value of z0 is determined by the surface roughness and the saltation intensity, both of which can be highly dynamic. Here we report field measurements of z0 values derived from velocity profiles measured over an evolving topography (i.e. sand ripples). The topography was measured by terrestrial laser scanning and the saltation intensity was measured using a disdrometer. By measuring the topographic evolution and saltation intensity simultaneously and using available formulae to estimate the topographic contribution to z0, we isolated the contribution of saltation intensity to z0 and document that this component dominates over the topographic component for all but the lowest shear velocities. Our measurements indicate that the increase in z0 during periods of saltation is approximately one to two orders of magnitude greater than the increase attributed to microtopography (i.e. evolving sand ripples). Our results also reveal differences in transport as a function of grain size. Each grain‐size fraction exhibited a different dependence on shear velocity, with the saltation intensity of fine particles (diameters ranging from 0.125 to 0.25 mm) saturating and eventually decreasing at high shear velocities, which we interpret to be the result of a limitation in the supply of fine particles from the bed at high shear velocities due to bed armoring. Our findings improve knowledge of the controls on the aerodynamic roughness length and the grain‐size dependence of aeolian sediment transport. The results should contribute to the development of improved sediment transport and dust emission models. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号