首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exceedance of the US Environmental Protection Agency national ambient air quality standard for PM10 (particulate matter ≤10 µm in aerodynamic diameter) within the Columbia Plateau region of the Pacific Northwest US is largely caused by wind erosion of agricultural lands managed in a winter wheat–summer fallow rotation. Land management practices, therefore, are sought that will reduce erosion and PM10 emissions during the summer fallow phase of the rotation. Horizontal soil flux and PM10 concentrations above adjacent field plots (>2 ha), with plots subject to conventional or undercutter tillage during summer fallow, were measured using creep and saltation/suspension collectors and PM10 samplers installed at various heights above the soil surface. After wheat harvest in 2004 and 2005, the plots were either disked (conventional) or undercut with wide sweeps (undercutter) the following spring and then periodically rodweeded prior to sowing wheat in late summer. Soil erosion from the fallow plots was measured during six sampling periods over two years; erosion or PM10 loss was not observed during two periods due to the presence of a crust on the soil surface. For the remaining sampling periods, total surface soil loss from conventional and undercutter tillage ranged from 3 to 40 g m–2 and 1 to 27 g m–2 while PM10 loss from conventional and undercutter tillage ranged from 0·2 to 5·0 g m–2 and 0·1 to 3·3 g m–2, respectively. Undercutter tillage resulted in a 15% to 65% reduction in soil loss and 30% to 70% reduction in PM10 loss as compared with conventional tillage at our field sites. Therefore, based on our results at two sites over two years, undercutter tillage appears to be an effective management practice to reduce dust emissions from agricultural land subject to a winter wheat–summer fallow rotation within the Columbia Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The endemic argan woodlands cover large parts of South Morocco and create a characteristic landscape with areas of sparsely vegetated and bare soil surfaces between single trees. This unique ecosystem has been under extensive agrosilvopastoral management for centuries and is now at risk of degradation caused by overgrazing and increasing scarcity and variability of rainfall. To investigate susceptibility to wind erosion, we conducted an experimental–empirical study including wind tunnel tests and a drone-generated digital elevation model and quantified wind-erodible material on five different associated surface types by means of sediment catchers. The highest emission flux was measured on freshly ploughed surfaces (1875 g m–2 h–1), while older ploughed areas with a re-established crust produced a much lower emission flux (795 g m–2 h–1). Extensive tillage may have been a sustainable practice for generations, but increasing drought and uncertainty of rainfall now lead to an acute risk of severe soil erosion and dust production. The typical crusted surfaces characterized by residual rock fragment accumulation and wash processes produced the second highest emission flux (1,354 g m–2 h–1). Material collected from tree-shaded areas (933 g m–2 h–1) was revealed to be a considerable source of organic material, possibly affecting substrate conditions positively on a larger regional scale. The lowest flux was measured on rock fragment-covered surfaces (301 g m–2 h–1). The data show that open argan woodland may be a considerable source for wind erosion and dust production, depending on surface characteristics strongly related to management. An adapted management must include the conservation of argan trees to offer a promising approach to prevent severe wind erosion and dust production and mitigate possible impacts of land-use change and climate change related shifts in wind and rainfall patterns. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

3.
Wind erosion from agricultural fields contributes to poor air quality within the Columbia Plateau of the United States. Erosion from fields managed in a conventional winter wheat–summer fallow rotation was monitored during the fallow period near Washtucna, WA, in 2003 and 2004. Loss of soil and PM10 (particulates ≤10 µm in diameter) was measured during six high wind events (sustained wind speed at 3 m height >6·4 m s?1). Soil loss associated with suspension, saltation and creep as well as PM10 emission was used to validate the Wind Erosion Prediction System (WEPS) erosion submodel. Input parameters for WEPS simulations were measured before each high wind event. The erosion submodel produced no erosion for half of the observed events and over‐predicted total soil loss by 200–700 kg ha?1 for the remaining events. The model appears to over‐predict total soil loss as a result of overestimating creep, saltation and suspension. The model both over‐predicted and under‐predicted PM10 loss. High values for the index of agreement (d > 0·5) suggest that the performance of the model is acceptable for the conditions of this study. While the performance of the model is acceptable, improvements can be made in modeling efficiency by better specifying the static threshold friction velocity or coefficients that govern emissions, abrasion and breakage of silt loams on the Columbia Plateau. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Karst solution processes are investigated on Oligocene limestones in the Waitomo district, west central North Island, New Zealand. Estimates of the inputs, throughputs and outputs of water and dissolved calcium and magnesium in two drainage basins were used to establish the rate of limestone solution by autogenic waters. The best estimate for solution loss from the basins during the study year is 69 m3/km2. The potential measurement errors inherent in each parameter used in the erosion rate computations were assessed and the probable maximum and minimum erosion rates were estimated to be 88 and 61 m3/km2. In both basins approximately 67 per cent of the annual solute load is transported by flows greater than the mean annual discharge, over 15 per cent being transported by flood flows that are exceeded only 5 per cent of the time. Almost half of the annual load is transported during the three winter months (June-August), but no one month accounts for more than 18 per cent or less than 2.7 per cent of the annual total. Approximately 37 per cent of solution takes place within the soil profile, and most of the remainder is concentrated in 5–10 m of weathered bedrock (the subcutaneous zone) beneath this. Thus, it is likely that at least 85 per cent of the total solutional erosion contributes to the surface lowering of soil and bedrock.  相似文献   

5.
Winter wheat–summer fallow is the conventional cropping system employed on >1·5 million ha within the Columbia Plateau of eastern Washington and northern Oregon. Wind erosion contributes to poor air quality in the region, yet little is known concerning the magnitude of soil and PM10 (particulate matter of ≤10 µm in aerodynamic diameter) loss from agricultural lands. Therefore, loss of soil and PM10 was assessed from a silt loam in eastern Washington during 2003 and 2004. Field sites were maintained in fallow using conventional tillage practices in 2003 (9 ha field) and 2004 (16 ha field) and instrumented to assess horizontal soil flux and PM10 concentrations at the windward and leeward positions in the field during high‐wind events. Soil flux was measured using creep and airborne sediment collectors while PM10 concentrations were measured using high‐volume PM10 samplers. Aggregate size distribution of parent soil and eroded sediment was characterized by rotary and sonic sieving. Six high‐wind events occurred over the two year period, with soil loss ranging from 43 kg ha?1 for the 12–22 September 2003 event to 2320 kg ha?1 for the 27–29 October 2003 event. Suspension‐sized particulates (<100 µm in diameter) comprised ≥90 per cent of the eroded sediment, indicating that direct suspension may be an important process by which the silt loam eroded. The corresponding loss of PM10 for these two events ranged from 5 to 210 kg ha?1. Loss of PM10 comprised 9–12 per cent of the total soil loss for the six events. This study suggests that the relatively small loss of PM10 from eroding agricultural fields maintained in summer fallow can affect air quality in the Columbia Plateau. Therefore, alternative tillage practices or cropping systems are needed for minimizing PM10 emissions and improving air quality in the region. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Studies of soil erosion on small plots present upscaling problems. The results in the literature on the effect of slope length (i.e. scale) on runoff and soil erosion are contradictory. Furthermore, most studies that examine scale effects measured through erosion plots have been conducted in Mediterranean environments. The objective of this study was to assess the effects of plot size on runoff and soil loss in a subtropical environment. Other measurements were taken to appraise the topsoil property changes inside the plots. The soil was ploughed twice, the surface was leveled with a hoe and it was kept bare during the experiment. Data were collected from 10 paired plots, five plots measuring 10 m × 1 m and five plots measuring 1 m × 1 m, installed in the same pedo‐geomorphologic unit. Measurements were carried out from November 2008 to November 2009. During this period, 97 natural storms were registered. The results indicate that the small plots tended to have higher runoff (30% higher) compared to larger plots, especially during periods of greater rainfall volume, duration and intensity. The soil loss was similar in both the 1 m2 plots (6·33 kg/m2) and the 10 m2 plots (6·26 kg/m2). Moreover, the dynamics of the soil loss during the experiment was relatively similar across both plot sizes. The large plots tended to have a greater internal complexity. In these plots, the steps retreat were higher, the overland flow scars were more frequent, and points of rill initiation and protochannels emerged in several parts of the plots. The results of the small plots were comparable to the results obtained on the large plots, especially in relation to soil loss. These plots were useful for short‐term assessments of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Measurement results of PM10 (particulate matter with diameters below 10 μm) concentrations performed at four stations in central Poland (2007–2010) were analyzed in terms of levels and distributions of concentrations, the number of exceedances of the limit values and the causes of these exceedances. PM10 levels were similar at suburban and rural stations, except of one station located in the vicinity of a busy street. The median of PM10 concentration ranged from 26 μg/m3 at suburban station to 44 μg/m3 at Warsaw Kerb station. Seasonal variability analysis of PM10 concentration revealed an additional maximum beyond the usual autumn-winter one. This maximum occurred in April at all stations, and corresponded to seasonal wildfires activity and dust activation in Eastern Europe. Cluster analysis of back-trajectories revealed that PM10 concentrations depend on the direction of advection of the incoming air; the highest values are registered for air of regional and southern origins, while the lowest are for the airmasses coming from the north and northwest direction.  相似文献   

9.
This article presents a simple physical concept of aeolian dust accumulation, based on the behaviour of the subprocesses of dust deposition and dust erosion. The concept is tested in an aeolian dust wind tunnel. The agreement between the accumulation curve predicted by the model and the accumulation curve obtained in the experiments is close to perfect and shows that it is necessary to discriminate between the processes of aeolian dust deposition and aeolian dust accumulation. Two important thresholds determine the accumulation process. For wind speeds below the deflation threshold, the aeolian accumulation of dust increases linearly with the wind speed. For wind velocities between the deflation threshold and the accumulation limit, the sedimentation balance is above unity and there is still accumulation, though it rapidly drops once the deflation threshold has been exceeded. At wind speeds beyond the accumulation limit, the sedimentation balance is below unity and there will no longer be an accumulation of dust. The thresholds have been determined in a wind tunnel test at friction velocity u* = 0·34 m s?1 (deflation threshold) and u* = 0·43 m s?1 (accumulation limit), but these values are only indicative since they depend heavily on the characteristics of the accumulation surface and of the airborne grains. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

11.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The spatial pattern of medium‐term (a few months) dry aeolian dust accumulation in rocky deserts is predicted using short‐term deposition and erosion experiments in a wind tunnel. The predictions are tested in a field experiment set up in the northern Negev Desert of Israel. The results show that superimposing wind tunnel deposition and erosion maps usually leads to correct predictions of medium‐term dust accumulation. The predictions are somewhat less confident near the inflection lines of windward hillslopes, where small‐scale irregularities in the local topography make it difficult to locate the exact position of the areas of little accumulation. Elsewhere in the topography predictions are good, and the method works satisfactorily. Highest accumulation occurs on concave windward slopes and, to a lesser extent, on slopes parallel to the wind. Little accumulation occurs on the convex windward slopes and in dust separation bubbles. The smallest accumulation rates are observed immediately upwind of the top of pronounced hills and on leeslopes. The rate of dry dust accumulation measured during the field experiment varied from 17 to 93 g m−2 a−1, depending on the topographic position of the accumulation plots. For most plots, it was of the order of 30–60 g m−2 a−1. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The Brazilian savanna (cerrado) is a large and important economic and environmental region that is experiencing significant loss of its natural landscapes due to pressures of food and energy production, which in turn has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in the cerrado as well as in other savannahs of the world. To understand the effects of deforestation we assessed natural rainfall‐driven rates of runoff and soil erosion on an undisturbed tropical woodland classified as ‘cerrado sensu stricto denso’ and bare soil. Results were evaluated and quantified in the context of the cover and management factor (C‐factor) of the Universal Soil Loss Equation (USLE). Replicated data on precipitation, runoff, and soil loss on plots (5 × 20 m) under undisturbed cerrado and bare soil were collected for 77 erosive storms that occurred over 3 years (2012 through 2014). C‐factor was computed annually using values of rainfall erosivity and soil loss rate. We found an average runoff coefficient of ~20% for the plots under bare soil and less than 1% under undisturbed cerrado. The mean annual soil losses in the plots under bare soil and cerrado were 12.4 t ha‐1 yr‐1 and 0.1 t ha‐1 yr‐1, respectively. The erosivity‐weighted C‐factor for the undisturbed cerrado was 0.013. Surface runoff, soil loss and C‐factor were greatest in the summer and fall. Our results suggest that shifts in land use from the native to cultivated vegetation result in orders of magnitude increases in soil loss rates. These results provide benchmark values that will be useful to evaluate past and future land use changes using soil erosion models and have significance for undisturbed savanna regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Although there is much evidence of intense soil erosion in cultivated areas of Navarre (Spain), information on it is currently scarce. Rill and ephemeral gully volumes can be used as a guide to minimum erosion rates. With the main purpose of determining the annual soil loss rates in cultivated areas of central Navarre, a detailed assessment of rainfall and of rill and gully erosion was made in 19 small catchments from October 1999 to September 2001. Seventeen of them were randomly selected, and were cultivated with winter cereals, vineyards or sunflowers. The other two catchments were selected to represent partially uncultivated lands abandoned for ten years. Channel cross‐sections were measured by using a 1‐m‐wide micro‐topographic profile meter, describing 632 cross‐sections and processing information from 31 600 pins. Erosive events happened every year in the three study areas. For cereal catchments, soil losses occurred in only one or two rainfall events each year, usually at the end of autumn and in some summers, with high erosion rates (0·20–11·50 kg m?2 a?1). In vineyards, soil losses occurred several times per year, and in any season. This is attributed to the small percentage of surface covered by the crop throughout the year. Again, high erosion rates were found (0·33–16·19 kg m?2 a?1), with ephemeral gully erosion causing more loss than rill erosion. No‐till is proposed as an effective conservation measure. From this large data set, it can be stated that rill erosion and ephemeral gully erosion are widespread in Mediterranean regions, and that much more attention should be paid to the problem. Abandoned fields showed very high erosion rates (16·19 kg m?2 a?1 on average), suggesting that the abandonment of marginal lands without implementing any erosion control can lead to severe erosion rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Monitoring of dust deposition at several stations on Crete over a three year period has shown that the present-day depositional flux is of the order of 10-100 gm−2 yr−1. Most of the dust deposition takes place during a few annual dust [events] which typically last for 1-3 days. Dust haze episodes are usually associated with southerly or southwesterly winds which transport fine sediment from North Africa. Dust is raised by a wide variety of meteorological conditions which generate strong near-surface winds in the source areas, but major long-range transport events are often associated with cold fronts linked to the passage of deep mid-latitude depressions during winter and spring. Dust haze frequency and deposition rates are highest in western Crete and decrease towards the east, suggesting that transport from Tunisia and neighbouring parts of North Africa is particularly important. The measured rate of dust deposition is well below the minimum level required for loess formation. Deposits which have previously been identified as loess are shown to be uncemented marine marls of Tertiary age. Laboratory analysis of red soils, surface sediments, and bedrock samples has confirmed that many of the soils contain an important aeolian dust component, but it is concluded that a more important source of soil parent material is provided by weathering of local rocks. Many of the soils contain significant amounts of quartz sand which cannot have been transported across the sea from North Africa. Reworking of weathered material and deposited dust is extensive, and is accomplished by both aeolian and fluvial processes. Tectonically-controlled depressions in the mountains and parts of the coastal lowlands have acted as long-term sinks in which a thickness of several metres of sediment and soil has accumulated during the Quaternary.  相似文献   

16.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

17.
Simulated rainfall experiments were performed on bare, undecomposed litter layer and semi-decomposed litter layer slopes with litter biomasses of 0, 50, 100 and 150 g m−2, respectively, to evaluate the effect of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the particle size distribution of eroded sediment. The undecomposed layer and semi-decomposed layer of litter reduced the runoff rate by 10.91–27.04% and 12.91–36.05%, respectively, and the erosion rate by 13.35–40.98% and 17.16–59.46%, respectively. The percentage of smaller particles (clay and fine silt particles) decreased and the percentage of larger particles (coarse silt and sand particles) increased with an increased rainfall duration on all treated slopes, while the extent of the eroded sediment particle content varied among the treated slopes with the rainfall duration, with bare slopes exhibiting the largest variability, followed by undecomposed litter layer slopes and finally semi-decomposed litter layer slopes. The clay and sand particles were transported as aggregates, and fine silt and coarse silt particles were transported as primary particles. Compared with the original soil, sediment eroded from all treated slopes was mainly enriched in smaller particles. Furthermore, the loss of the smaller particles from the undecomposed litter layer slopes was lower than that from the semi-decomposed litter layer slopes, indicating that the undecomposed litter layer alleviated soil coarsening to some extent. The findings from this study improve our understanding of how litter regulates slope erosion and provide a reference for effectively controlling soil erosion.  相似文献   

18.
East Asian dust storms have become increasingly intense over the last two decades, and the arid inland regions of northern China have been recognized as the main dust source areas. Numerous lakes in this region have recently become desiccated, leaving large areas of bare ground prone to becoming potential dust sources. Vegetation cover characteristics and vegetation succession following lake desiccation remain unclear. Here we chose eight inland dry lakes, one outflow lake and one river on the southeast edge of the Inner Mongolian Plateau to investigate vegetation patterns along transects from lake bed to lake shore, and determine the relationships between vegetation patterns and environmental factors. The results show that dry lake bed soils do indeed have high contents of fine particles. Also, soil salt content is the most critical control on vegetation succession on desiccated lake beds, and vegetation is unlikely to colonize areas with soil salt content ≥5%. Soil texture additionally influenced vegetation patterns by affecting soil salt content. The likely vegetation succession on dry like beds is Nitraria tangutorum community > Suaeda corniculata and Suaeda glauca communities > Achnatherum splendens and Elymus sibiricus communities, and finally Carex duriuscula community as the probable climax. When vegetation is at the later stages of succession, for example with Achnatherum splendens communities, Elymus sibiricus communities and Carex duriuscula communities, soil may be protected from wind erosion because of their high vegetation cover and high proportion of perennials. We suggest grazing should be avoided around lake shores, especially in Achnatherum splendens communities, because high vegetation cover and biomass not only protect soil from erosion, but also promote the deposition of fine particles blown from upwind regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of this study is to investigate the effect of rainfall intensity and slope gradient on the performance ofvetiver grass mulch (VGM) in soil and water conservation.The study involved field ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号