首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old‐growth redwood forests has not been evaluated to date. Old‐growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km‐2 and soil organic carbon can reach 46 800 Mg km‐2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old‐growth redwood forests. Carbon content, determined through loss‐on‐ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km‐2 yr‐1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km‐2 yr‐1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km‐2 yr‐1. Because the current extent of old‐growth redwood stands is less than 5% of its pre‐European‐settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
The paraglacial reworking of glacial sediments by rivers and mass wasting is an important conditioning factor for modern sediment yields in mountainous catchments in formerly glaciated regions. Catchment scale and patterns of sediment storage are important influences in the rate of postglacial adjustment. We develop a quantitative framework to estimate the volume, sediment type, and fractional size distribution of legacy glacial materials in a large (1230 km2) watershed in the North Cascade Mountains in south‐western British Columbia, Canada. Chilliwack Valley is exceptional because of the well‐dated bounds of deglaciation. Interpolation of paleo‐surfaces from partially eroded deposits in the valley allows us to estimate the total evacuated sediment volume. We present a chronology of sediment evacuation from the valley and deposition in the outlet fan, based on infrared stimulated luminescence (IRSL) and 14 C dating of river terraces and fan strata, respectively. The effects of paraglacial sedimentation in Chilliwack Valley were intensified through a major fall in valley base‐level following ice retreat. The steepened mainstem valley gradient led to deep incision of valley fills and fan deposits in the lower valley network. The results of this integrated study provide a postglacial chronology and detailed sediment budget, accounting for long‐term sorting of the original sediments, lag deposit formation in the mainstem, deposition in the outlet fan, and approximate downstream losses of suspended sediment and wash load. The mass balance indicates that a bulk volume of approximately 3.2 km3 of glacial material has been evacuated from the valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
River deltas are the major repositories of terrestrial sediment flux into the world's oceans. Reduction in riverine inputs into the deltas due to upstream damming might lead to a relative dominance of waves, tides and currents that are especially exacerbated by coastal subsidence and sea‐level rise ultimately affecting the delta environment. Analysis of multi‐date satellite imagery and maps covering the Krishna and Godavari deltas along the east coast of India revealed a net erosion of 76 km2 area along the entire 336‐km‐long twin delta coast during the past 43 years (1965–2008) with a progressively increasing rate from 1·39 km2 yr?1 between 1965 and 1990, to 2·32 km2 yr?1 during 1990–2000 and more or less sustained at 2·25 km2 yr?1 during 2000–2008. At present the Krishna has almost become a closed basin with decreased water discharges into the delta from 61·88 km3 during 1951–1959 to 11·82 km3 by 2000–2008; and the suspended sediment loads from 9 million tons during 1966–1969 to as low as 0·4 million tons by 2000–2005. In the case of the Godavari delta, although the water discharge data do not show any major change, there was almost a three‐fold reduction in its suspended sediment loads from 150·2 million tons during 1970–1979 to 57·2 million tons by 2000–2006. A comparison of data on annual sediment loads recorded along the Krishna and Godavari Rivers showed consistently lower sediment quantities at the locations downstream of dams than at their upstream counterparts. Reports based on bathymetric surveys revealed considerable reduction in the storage capacities of reservoirs behind such dams. Apparently sediment retention at the dams is the main reason for the pronounced coastal erosion along the Krishna and Godavari deltas during the past four decades, which is coeval to the hectic dam construction activity in these river basins. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

5.
An excess of fine sediment (grain size <2 mm) supply to rivers leads to reservoir siltation, water contamination and operational problems for hydroelectric power plants in many catchments of the world, such as in the French Alps. These problems are exacerbated in mountainous environments characterized by large sediment exports during very short periods. This study combined river flow records, sediment geochemistry and associated radionuclide concentrations as input properties to a Monte Carlo mixing model to quantify the contribution of different geologic sources to river sediment. Overall, between 2007 and 2009, erosion rates reached 249 ± 75 t km?2 yr?1 at the outlet of the Bléone catchment, but this mean value masked important spatial variations of erosion intensity within the catchment (85–5000 t km?2 yr?1). Quantifying the contribution of different potential sources to river sediment required the application of sediment fingerprinting using a Monte Carlo mixing model. This model allowed the specific contributions of different geological sub‐types (i.e. black marls, marly limestones, conglomerates and Quaternary deposits) to be determined. Even though they generate locally very high erosion rates, black marls supplied only a minor fraction (5–20%) of the fine sediment collected on the riverbed in the vicinity of the 907 km2 catchment outlet. The bulk of sediment was provided by Quaternary deposits (21–66%), conglomerates (3–44%) and limestones (9–27%). Even though bioengineering works conducted currently to stabilize gullies in black marl terrains are undoubtedly useful to limit sediment supply to the Bléone river, erosion generated by other substrate sources dominated between 2007 and 2009 in this catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The Indus River has been progressively transformed in the last decades into a tightly regulated system of dams and channels, to produce food and energy for the rapidly growing population of Pakistan. Nevertheless, Indus River sands as far as the delta largely retain their distinct feldspar- and amphibole-rich composition, which is unique with respect to all other major rivers draining the Alpine–Himalayan belt except for the Brahmaputra. Both the Indus and Brahmaputra Rivers flow for half of their course along the India–Asia suture zone, and receive major contributions from both Asian active-margin batholiths and upper-amphibolite-facies domes rapidly exhumed at the Western and Eastern Himalayan syntaxes.Composition of Indus sands changes repeatedly and markedly in Ladakh and Baltistan, indicating overwhelming sediment flux from each successive tributary as the syntaxis is approached. Provenance estimates based on our integrated petrographic–mineralogical data set indicate that active-margin units (Karakorum and Transhimalayan arcs) provide ∼81% of the 250±50 106 t of sediments reaching the Tarbela reservoir each year. Partitioning of such flux among tributaries and among source units allows us to tentatively assess sediment yields from major subcatchments. Extreme yields and erosion rates are calculated for both the Karakorum Belt (up to 12,500±4700 t/km2 year and 4.5±1.7 mm/year for the Braldu catchment) and Nanga Parbat Massif (8100±3500 t/km2 year and 3.0±1.3 mm/year). These values approach denudation rates currently estimated for South Karakorum and Nanga Parbat crustal-scale antiforms, and highlight the major influence that rapid tectonic uplift and focused glacial and fluvial erosion of young metamorphic massifs around the Western Himalayan Syntaxis have on sediment budgets of the Indus system.Detailed information on bulk petrography and heavy minerals of modern Indus sands not only represents an effective independent method to constrain denudation rates obtained from temperature–time histories of exposed bedrock, but also provides an actualistic reference for collision-orogen provenance, and gives us a key to interpreting provenance and paleodrainage changes recorded by clastic wedges deposited in the Himalayan foreland basin and Arabian Sea during the Cenozoic.  相似文献   

7.
In contrast to much previous research on blanket peat moorland, which has concentrated upon studies of the form and causes of gully erosion, this paper attempts to investigate sediment transport and to estimate both short-term and long-term sediment yields in such terrain. The research was conducted on Wessenden Head Moor to the west of Huddersfield, Yorkshire, where automatic stream sampling continued over a period of two years. Use of corrected rating curves (Ferguson, 1988) provided a mean estimate of sediment yield over this period of 55 t km?2 yr?1. In addition an estimate of longer-term sediment yield was derived from four reservoir sediment surveys in the Wessenden Valley. Total yield was 203.69 t km?2 yr?1, including an organic fraction of 38.82 t km ?2 yr?1. Stream sampling at three sites on Shiny Brook, including headwaters and the outflow to the reservoir, suggested that there is great temporal and spatial variability in mineral and organic inputs to the reservoirs. Although not excessive in gravimetric terms, the low density of peat means that there is a serious erosion problem. Estimates of erosion rates for the peat gully network at Shiny Brook appear to confirm earlier evidence concerning the relatively recent occurrence of this erosion, within the last two centuries.  相似文献   

8.
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using structure-from-motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12-month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus, direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1, respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio-fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment-transfer processes is limited in the Alaskan Arctic – a region sensitive to contemporary environmental change. For two glaciated sub-catchments at Lake Peters, northeast Brooks Range, Alaska, we conducted a two-year endeavour to monitor the hydrology and meteorology, and used the data to derive multiple-regression models of suspended sediment load. Statistical selection of the best models shows that incorporating meteorological or temporal explanatory variables improves performances of turbidity- and discharge-based sediment models. The resulting modelled specific suspended sediment yields to Lake Peters are: 33 (20–60) t km−2 yr−1 in 2015, and 79 (50–140) t km−2 yr−1 in 2016 (95% confidence band estimates). In contrast to previous studies in Arctic Alaska, fluvial suspended sediment transfer to Lake Peters was primarily influenced by rainfall, and secondarily influenced by temperature-driven melt processes associated with clockwise diurnal hysteresis. Despite different sub-catchment glacier coverage, specific yields were the same order of magnitude from the two primary inflows to Lake Peters, which are Carnivore Creek (128 km2; 10% glacier coverage) and Chamberlin Creek (8 km2; 23% glacier coverage). Seasonal to longer-term sediment exhaustion and/or contrasting glacier dynamics may explain the lower than expected relative specific sediment yield from the more heavily glacierized Chamberlin Creek catchment. Absolute suspended sediment yield (t yr−1) from Carnivore Creek to Lake Peters was 27 times greater than from Chamberlin Creek, which we attribute to catchment size and sediment supply differences. Our results provide a foundational understanding of the current sediment transfer regime and are useful for predicting changes in fluvial sediment transport in glaciated Alaskan Arctic catchments.  相似文献   

10.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

12.
Landslides generate enormous volumes of sediment in mountainous watersheds; however, quantifying the downstream transport of landslide‐derived sediment remains a challenge. Landslide erosion and sediment delivery to the Shihmen Reservoir watershed in Taiwan was estimated using empirical landslide frequency–area and volume–area relationships, empirical landslide runout models, and the Hydrological Simulation Program‐ FORTRAN (HSPF). Landslide erosion rates ranged from 0.4 mm yr‐1 to 2.2 mm yr‐1 during the period 1986–2003, but increased to 7.9 mm yr‐1 following Typhoon Aere in 2004. The percentage of landslide sediment delivered to streams decreased from 78% during the period 1986–1997 to 55% in 2004. Although the delivery ratio was lower, the volume of landslide sediment delivered to streams was 2.81 × 106 Mg yr‐1 in 1986–1997 and 8.60 × 106 Mg yr‐1 in 2004. Model simulations indicate that only a small proportion of the landslide material was delivered downstream. An average of 13% of the landslide material delivered to rivers was moved downstream during the period 1986–1997. In 2004, the period including Typhoon Aere, the annual fluvial sediment yield accounted for approximately 23% of the landslide material delivered to streams. In general, the transfer of sediment in the fluvial system in the Shihmen Reservoir watershed is dominantly transport limited. The imbalance between sediment supply and transport capacity has resulted in a considerable quantity of landslide material remaining in the upper‐stream regions of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Climate change characterized by increasing temperature is able to affect precipitation regime and thus surface hydrology.However,the manner in which river sediment loads respond to climate change is not well understood,and related assessment regarding the effect of climate change on sediment loads is lacking.We present a quantitative estimate of changes in sediment loads(from 1.5 Gt yr-1 pre-1990 to 0.6 Gt yr-1 from 1991-2007) in response to climate change in eight large Chinese rivers.Over the past decades,precipitation change coupled with rising temperatures has played a significant role in influencing the sediment delivery dynamics,although human activities, such as reservoir construction,water diversion,sand mining and land cover change,are still the predominant forces. Lower precipitation coupled with rising temperatures has significantly reduced sediment loads delivered into the sea in semi-arid climates(4-61%).In contrast,increasingly warmer and wetter climates in subtropical zones has yielded more sediment(0.4-11%),although the increase was offset by human impact.Our results indicate that,compared with mechanical retention by reservoirs,water reduction caused by climate change or human withdrawals has contributed more sediment reduction for the rivers with abundant sediment supply but limited transport capacity(e.g.,the Huanghe).Furthermore,our results indicate that every 1%change in precipitation has resulted in a 1.3%change in water discharge and a 2%change in sediment loads.In addition,every 1%change in water discharge caused by precipitation has led to a 1.6%change in sediment loads,but the same percentage of water discharge change caused largely by humans would only result in a 0.9%change in sediment loads.These figures can be used as a guideline for evaluating the responses of sediment loads to climate change in similar climate zones because future global warming will cause dramatic changes in water and sediment in river basins worldwide at rates previously unseen.  相似文献   

14.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
Every year the Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment, respectively. These high loads of suspended sediment reflect the very high rate of denudation in their drainage basins. The average mechanical denudation rate for the Ganges and Brahmaputra basins together is 365 mm 103 yr−1. However, the rate is higher in the Brahmaputra Basin than that in the Ganges Basin. Several factors, including mean trunk channel gradient, relief ratio, runoff, basin lithology and recurring earthquakes are responsible for these high denudation rates. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) are delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) are deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) are deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3·9 cm yr−1. Although the Brahmaputra transports a higher sediment load than the Ganges, the channel bed aggradation rate is much higher for the Ganges. This study also documents a wide range of interannual, seasonal and daily variation in suspended sediment transport and water discharge. Interannual variation in sediment deposition within the basin is also suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

17.
Dam construction in the 1960s to 1980s significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for 1 year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (c. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr‐1. Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall‐out radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross‐section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non‐existent as autogenic processes overwhelm the changes in the input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Extensive valley fills at the base of the escarpment in upper Wolumla Creek, on the south coast of New South Wales, Australia, have formed from a combination of ‘cut and fill’ processes. The valley fills comprise series of alternating, horizontally bedded sand and mud units, reflecting reworking of detritus from deeply weathered granites of the Bega Batholith. Sand units are deposited as sand sheets or splays on floodplain surfaces or in floodouts that form atop intact valley fill surfaces downstream of discontinuous gullies. Alternatively, sands are deposited from bedload and form bars or part of the valley floor within channel fills. Organic-rich mud units are deposited from suspension in swamps or in seepage zones at the distal margin of floodouts. Within 5 km of the escarpment, valley deposits grade downstream from sand sheet and splay deposition in floodouts, to mud deposition in swamp and seepage zones. Radiocarbon dates indicate that virtually the entire valley fill of upper Wolumla Creek was excavated prior to 6000 years BP . Remnant terraces are evident at valley margins. The valley subsequently filled between 6000 years BP and 1000 years BP producing valley fills around 12 m deep, but no greater than 300 m wide. Reincision into the valley fill, on a scale smaller than the present incision phase, is indicated at around 1000 years BP , following which the channel refilled. Portion plans dated from 1865 refer to the study area as ‘Wolumla Big Flat’, and show large areas of swampy terrain, suggesting that the valley fill had re-established by this time. Within a few decades of European settlement the valley fill incised once more. Upper Wolumla Creek now has a channel over 10 m deep and 100 m wide in places, draining a catchment area of less than 20 km2. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Erosion processes on active volcanoes in humid climates result in some of the highest sediment yields on Earth. Episodic sediment yields after large eruptions have been evaluated, but not the long-term and continuous patterns on persistently active volcanoes. We have used high-spatial resolution satellite imagery and DEMs/DSMs along with field-based geologic mapping to assess accurately sediment budgets for the active Semeru Volcano in Java, Indonesia. Patterns of aggradation and degradation on Semeru differ from that of other active volcanoes because (1) both episodic pyroclastic density currents (PDC) and continuous supplies of tephra generate pulses of sediment, (2) sediment is transferred via cycles of aggradation and degradation that continue for >15 years in river channels after each PDC-producing eruption, and (3) rain-triggered lahars remove much greater material than fluvial transport during long, intense rainfall events. The geomorphic response of two of Semeru’s rivers to volcanic sediment migration indicates that (1) each river experiences alternating aggradation and degradation cycles following PDC-producing eruptions and (2) spatial patterns of sediment transfer are governed by geomorphic characteristics of the river reaches. Usually high degradation in the steep source reach is followed by a long bypassing middle reach. Aggradation predominates in the depositional reaches further down valley on the ring plain. Average sediment yields (103–105 t/km2/year) at persistently active volcanoes are two to three orders of magnitude lower than sediment yields after large and infrequent eruptions, but the continuous and steady sediment transfer in rivers removes more sediment on a mid-term (10 years) to long-term (30 years) basis. In contrast to the trend observed on composite cones after large and infrequent eruptions, decay of sediment yields is not exponential and river channels do not fully recover at steadily active volcanoes as episodic inputs from BAF eruptions, superimposed on the background remobilization of daily tephra, have a greater cumulative effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号