首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incision as a result of fluvial erosion is an important process to model when simulating landform evolution. For gullies, it is apparent that coupled with the processes that cause incision there must be a range of processes that stop incision. Once started, rills and gullies will grow infinitely without a reduction in support area and/or being arrested by deposition and armouring. Some of these processes have been well studied under the heading of inter-rill erosion. Other limiting processes are related to the shape of the landform and how downstream deposition areas are linked geomorphically to the upstream gullies. Armouring is also an important process that reduces gully incision and extension, where the gully erodes to bedrock and the resistant base limits further development. Post-mining landscapes are new surfaces with new materials and provide the opportunity to examine gully initiation, extension and stabilization. The work presented here has largely been driven by the mining industry, where there has been a need to assess erosion over hazardous wastes like mine tailings and low-level nuclear waste. We demonstrate the usefulness of computer-based landscape evolution models and the more recent soilscape models (that include both surface and subsurface processes) to understand both fluvial and diffusive processes as well as armouring in a digital elevation model framework (as well as landscape evolution). Landscape evolution models provide insights into complex non-linear systems such as gullies. A key need is that of field data to parameterize and validate the models. It is argued that current models have more capability than field data available for parameterization and importantly the validation of model outputs.  相似文献   

2.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Gully erosion is a major environmental threat on the Moldavian Plateau (MP) of eastern Romania. The permanent gully systems consist of two main gully types. These are: (1) discontinuous gullies, which are mostly located on hillslopes and (2) large continuous gullies in valley bottoms. Very few studies have investigated the evolution of continuous gullies over the medium to longer term. The main objective of this study was to quantitatively analyse the development of continuous gullies over six decades (1961–2020). The article aimed at predicting temporal patterns of gully head erosion based on field data from multiple gullies. Fourteen representative continuous gullies were selected near the town of Barlad, most of them having catchment areas < 500 ha. Linear gully head retreat (LGHR) and areal gully growth (AGG) rates were quantified for six decades. Two main periods were distinguished and compared (i.e., the wet 1961–1980 period and the drier 1981–2020 period). Results indicate that gully erosion rates have significantly decreased since 1981. The mean LGHR of 7.7 m yr−1 over 60 years was accompanied by a mean AGG of 213 m2 yr−1. However, erosion rates between 1961 and 1980 were 4.0 times larger for LGHR and 5.9 times more for AGG compared to those for 1981–2020. Two regression models indicate that annual precipitation depth (P) is the primary controlling factor, explaining 57% of LGHR and 53% of AGG rate. The contributing area (CA) follows, with ~33%. Only 43% of total change in LGHR and 46% of total change in AGG results from rainfall-induced runoff during the warm season. Accordingly, the cold season (with associated freeze–thaw processes and snowmelt runoff) has more impact on gully development. The runoff pattern, when flow enters the trunk gully head, is largely controlled by the upper approaching discontinuous gully.  相似文献   

4.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

5.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Predicting the location of gully heads in various environments is an important step towards predicting gully erosion rates. So far, field data collection and modelling of topographic thresholds for gully head development has mainly focused on gullies that formed in forested areas, rangelands, pastures and cropland. Such information for gullies in badlands however is very scarce. Therefore, this paper aims to extend the database on gully head topographical thresholds through data collection in a badland area and to improve the prediction of gully heads forming at sites with a very low erosion resistance value. For this, we chose a badland site located in central Italy that is characterized by biancana forms and both active and dormant gullies. The definition of the conditions under which present‐day gully heads developed allowed a better modelling of the gully head threshold equation, with modification of a previous model and the exemplification of how to use the updated model. The model shows that the resistance to gully head retreat depends on slope gradient and drainage area at gully heads, land use at the moment of gully development (as numerically expressed using parameters derived from the Runoff Curve Number method), surface rock fragment cover, presence of joints, pipes, and factors/processes affecting detachment rate. This study attempted to better understand environmental conditions that control the development of gully heads in badlands through a combination of field data collection of gully heads, an analysis of land use changes over 10 centuries, focusing on the period 1820–2005, and land use management through repeat photography and a critical examination of historical documents. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In Mediterranean areas the dynamics of gully development act as an important indicator of desertification. However, little is known about the influence of climate and land‐use changes, and almost no field data exist to assess the sensitivity of a landscape to gully erosion. Two important components of gully erosion studies are the prediction of where gullies begin and where they end. To address some of these issues, topographical thresholds for gully initiation and sedimentation in six different Mediterranean study areas were established. Field measurements of local soil surface slope (S) and drainage‐basin area (A) at the point of initiation of ephemeral gullies in intensively cultivated fields (five datasets) and permanent gullies in rangelands (three datasets) were carried out. A negative power relationship of the form S = aAb was fitted through all datasets, and defined as the mean topographical threshold for gullying in the respective area. Topographically controlled slopes of sedimentation at the gully bottom were also measured. Compared to theoretical relationships for channel initiation by overland flow, relatively low values for b are obtained, suggesting a dominance of overland flow and an influence of subsurface flow. The influence of landsliding at steeper slopes appeared from the flattening of the overall negative trend in the higher slope range (S > 0·30) of the integrated dataset. Comparing the threshold lines of our datasets to the average trend lines through data found in literature revealed that vegetation type and cover could better explain differences in topographical thresholds level than climatic conditions. In cultivated fields, soil structure and moisture conditions, as determined by the rainfall distribution, are critical factors influencing topographical thresholds rather than daily rainfall amounts of the gully‐initiating events. In rangelands, vegetation cover at the time of incision appears to be the most important factor differentiating between topographical thresholds, overruling the effect of average annual rainfall amounts. Soil texture and rock fragment cover contributed little to the explanation of the relative threshold levels. Differences in regression slopes (b) between the S–A relationships found in this study have been attributed to the soil characteristics in the different study areas, determining the relative importance of subsurface flow and Hortonian overland flow. Sedimentation slopes where both ephemeral and permanent gullies end were generally high because of the high rock fragment content of the transported sediment. A positive relationship was found between the rock fragment content at the apex of the sedimentation fan and the slope of the soil surface at this location. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Large (>0.1 km2) gully–mass movement complexes (badass gullies) are significant contributors to the sediment cascade in New Zealand's steepland East Coast Region catchments. The scale of change taking place in these gully systems allows significant evolution in morphology and sediment dynamics to be tracked at annual to decadal timescales. Here we document changes in two adjacent badass gullies in Waipaoa catchment (Tarndale and Mangatu) to infer sediment generation processes and connectivity using a morphological budgeting approach. A baseline dataset for this study is provided by a LiDAR-derived digital elevation model (DEM) in 2005. We produced new DEMs and orthophoto mosaics using photogrammetry in 2017, 2018, and 2019 to quantify gully morphodynamics and associated volumes of sediment erosion and deposition in both systems as they co-evolved. Results indicate ongoing rapid development of both gully complexes. Severe erosion took place at the gully heads with lowering and migration (up to 25 m vertically and laterally) of the topographic divide separating the two gullies between 2005 and 2019. Over the same period, net lowering of each gully system was ~250 mm year−1. Key sediment-generating processes included surface erosion, deep-seated landslides, and debris flows. Longer term, the overall contribution of sediment from both badass gullies to the Waipaoa catchment has been declining. In the mid-20th century, both gullies yielded in excess of 300 kt year−1. From 2005 to 2019, 80 kt year−1 was yielded from Tarndale and 110 kt year−1 from Mangatu. Our most recent surveys demonstrated considerable variability in sediment yield, ranging from 76 kt year−1 (2017–2018) to 291 kt year−1 (2018–2019). The annual variability observed reflects the complex morphodynamics of discrete hillslopes and tributary fans in these badass gully systems and underlines the importance of integrating decadal and annual surveys when assessing system trajectory. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
The Black Mountain Scarp in Carmarthenshire is currently being modified by debris-flow activity along gullies cut into the vegetated scree, which is a persistent feature of the scarp-front. Low angled, concave debris flow cones are accumulating at the mouths of the gullies. Mean rate of sediment yield from the sides of one gully was estimated to be 8·4 m3 in one year, and 9·8 m3 was shifted out of the gully by a single debris-flow in the same year. Movement by other transport processes, such as streamflow, was negligible in the gullies. No new gullies are being initiated at the present and all of them appear to be in a similar state of development. Consequently, it appears that some marked environmental change was responsible for initiating gully erosion. If present rates of gully-erosion are representative of the past, the gullies are only about 540–700 years old and may possibly have been initiated by sheep-grazing in the area.  相似文献   

11.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoon–erosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion‐control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systemat‐ically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first‐order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion. Topographic data from intensive field surveys and detailed photogrammetry provide slope–contributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10‐cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false‐positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
For sake of improving our current understanding on soil erosion processes in the hilly–gully loess regions of the middle Yellow River basin in China, a digital elevation model (DEM)-based runoff and sediment processes simulating model was developed. Infiltration excess runoff theory was used to describe the runoff generation process while a kinematic wave equation was solved using the finite-difference technique to simulate concentration processes on hillslopes. The soil erosion processes were modelled using the particular characteristics of loess slope, gully slope, and groove to characterize the unique features of steep hillslopes and a large variety of gullies based on a number of experiments. The constructed model was calibrated and verified in the Chabagou catchment, located in the middle Yellow River of China and dominated by an extreme soil-erosion rate. Moreover, spatio-temporal characterization of the soil erosion processes in small catchments and in-depth analysis between discharge and sediment concentration for the hyper-concentrated flows were addressed in detail. Thereafter, the calibrated model was applied to the Xingzihe catchment, which is dominated by similar soil erosion processes in the Yellow River basin. Results indicate that the model is capable of simulating runoff and soil erosion processes in such hilly–gully loess regions. The developed model are expected to contribute to further understanding of runoff generation and soil erosion processes in small catchments characterized by steep hillslopes, a large variety of gullies, and hyper-concentrated flow, and will be beneficial to water and soil conservation planning and management for catchments dealing with serious water and soil loss in the Loess Plateau.  相似文献   

14.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

15.
Application of a simple headcut advance model for gullies   总被引:1,自引:0,他引:1       下载免费PDF全文
Gully erosion begins in streambanks and uplands as a consequence of adjustments in driving forces on the landscape imposed by changes in land use or climate. The deleterious effects of gullies worldwide have led to many site‐specific studies of gully form and function. In the continental United States, gully erosion in agricultural land has destroyed valuable farmland yet, prediction of gully processes remains problematic on a national scale. This research has proposed a simple method to predict gully headcut advance. When combined with SWAT hydrologic flow routines, the model predicted gully headcut advance with reasonable accuracy on a daily time step for time periods exceeding two decades. The model was tested in two distinct land resource areas of the United States with differing climate, soils, cover and drainage. The inputs for the headcut model have been kept simple as the model will be applied over large areas. Model inputs consist of headcut height, headcut resistance (based on soil erodibility and a root‐cover factor), and daily flow. The model is compared with an annual time step model used in assessment of headcut advance and appears to offer a better way to assess gully headcut advance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The sediment delivery ratio was estimated for two periods (28 years and eight years) following reforestation of seven tributary catchments (0·33 to 0·49 km2) in the headwaters of the Waipaoa River basin, North Island, New Zealand. In these catchments, gully erosion, which largely resulted from clearance of the natural forest between 1880 and 1920, is the main source of sediment to streams. Reforestation commenced in the early 1960s in an attempt to stabilize hillslopes and reduce sediment supply. Efforts have been partially successful and channels are now degrading, though gully erosion continues to supply sediment at accelerated rates in parts of the catchment. Data from the area indicate that the sediment delivery ratio (SDR) can be estimated as a function of two variables, ψ (the product of catchment area and channel slope) and A g (the temporally averaged gully area for the period). Sediment input from gullies was determined from a well defined relationship between sediment yield and gully area. Sediment scoured from channels was estimated from dated terrace remnants and the current channel bed. Terrace remnants represent aggradation during major floods. This technique provides estimates of SDR averaged over periods between large magnitude terrace‐forming events and with the present channel bed. The technique averages out short‐term variability in sediment flux. Comparison of gully area and sediment transport between two periods (1960–1988 and 1988–1996) indicates that the annual rate of sediment yield from gullies for the later period has decreased by 77 per cent, sediment scouring in channels has increased by 124 per cent, and sediment delivered from catchments has decreased by 78 per cent. However, average SDR for the tributaries was found to be not significantly different between these periods. This may reflect the small number of catchments examined. It is also due to the fact that the volume of sediment scoured from channels was very small relative to that produced by gullies. According to the equation for SDR determined for the Waipaoa headwaters, SDR increases with increasing catchment area in the case where A g and channel slope are fixed. This is because the amount of sediment produced from a channel by scouring increases with increasing catchment area. However, this relationship does not hold for the main stem of the study catchments, because sediment delivered from its tributaries still continues to accumulate in the channel. Higher order channels are, in effect, at a different stage in the aggradation/degradation cycle and it will take some time until a main channel reflects the effects of reforestation and its bed adjusts to net degradation. Results demonstrate significant differences among even low order catchments, and such differences will need to be taken into consideration when using SDR to estimate sediment yields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
ROCESSES OF EPHEMERAL GULLY EROSION   总被引:2,自引:0,他引:2  
IINTRoDUCTIONEphemeralgulliesaresmallerosionalchannelsonagriculturalIandscapescausedbytheconcentrationofoverlandflowtypicallybetweentwoopposingslopes(ahollow),oftenformedduringasingIerainfaIlevent.Sincethescouredsoilvolumeisnotverylargewithinthesegullies,farmerscaneasilyrefillthem.Ingeneral,ephemeralgulliescanreappearatornearthesamelocationonayearlybasisbecausethesurfacetopograPhyofthefielddoesnotchangeappreciably.Mostephemeralgulliesoccuroncultivatedfieldswithhighlyerodiblesoils,withlit…  相似文献   

18.
Land degradation in South Africa has been of concern for more than 100 years with both climate change and inappropriate land management (overgrazing) being proposed as primary drivers. However, there are few quantitative studies of degradation and, in particular, few of erosion by water. Badlands, taken here to be the landform which results from extreme erosion, have been notably neglected. We report on 13 consecutive years of erosion pin measurements of badland erosion on 10 study sites in the Sneeuberg uplands of the eastern Karoo in South Africa. The study sites are on Holocene colluvium which mantles footslopes. They have been subject to overgrazing for at least 100 years, c. 1850–1950. Currently they are lightly grazed by sheep. The area receives about 500 mm rainfall per year. The sites are remote, with only informal, farmer‐operated, daily raingauges nearby. The nearest sub‐daily raingauge is c. 55 km distant. Also we report on an analysis of the erosion pin data which focuses on establishing the origins and context of the badlands, including the relationship between study sites and adjacent valley‐bottom gully systems; compare erosion rates on our study sites with rates determined by erosion pins on other badland sites; and discuss the implications of these erosion rates for landscape development and off‐site impacts. Net erosion rates on the study sites are relatively high compared with global badland rates and range from 3.1 to 8.5 mm yr‐1 which may be extrapolated to 53 to 145 t ha yr‐1 (using a measured bulk density of 1.7 g cm‐3). However, comparisons with badland sites elsewhere are difficult because of different measuring methodologies, lithologies, climate and dominant processes. Erosion rates on the study sites are strongly influenced by rainfall amounts and, in particular, by daily rainfall events which exceed ~10 mm: this is the threshold intensity at which runoff has been observed to commence on badlands. Of significance, but of lesser influence, is weathering, mainly by wetting and drying: this prepares bare surfaces for erosion. However, questions remain regarding the role of site characteristics, and of processes at each site, in determining between‐site differences in erosion rate. Crude extrapolation of current rates of erosion, in conjunction with depths of incision into the badlands, suggests that badland development started around 200 years ago, probably as a response to the introduction of European‐style stock farming which resulted in overgrazing. We assume, but cannot quantify, the additional influence of periods of drought and burning in the erosional history of the area. Intermittent connection of these badlands to valley‐bottom gullies and therefore to small farm dams and ultimately to large water storage reservoirs increases their impact on local water resources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Mountaintop removal/valley fill coal mining (MTR/VF) in central Appalachia has buried an estimated 4000 km of headwater streams, but the long-term geomorphic consequences of the anthropogenic valley fills and associated mined landscapes are poorly understood. These anthropogenic landscapes are not intended to be maintained in perpetuity once reclamation is complete. Here we present the first ever field-based study of erosional landforms on this type of mined landscape paired with the subsequent examination of 10 regional LiDAR (light detection and ranging) datasets for gullies and landslides in a transect from eastern Kentucky to central West Virginia. Field observations indicate that overtopping of or intentional discharge from drainage systems and overtopping of valley fill terraces can initiate gullying. We manually extracted 1328 gullies from 512 km2 of mined landscape within the LiDAR datasets. Gullies are predominantly located along the perimeter of the mined landscape with the majority of gullies associated with drainage systems. The number of gullies linearly scales with mined area (R2 = 0.66). We observed 387 landslides along the perimeter of MTR/VF. Within the datasets, landslides per km2 ranged from 0.1 to 3.9. We observed 34 landslides within fully reclaimed valley fills, a heretofore undocumented phenomenon. Over 90% of these landslides were in Kentucky datasets, which covered only 47% of total mined area analyzed. Previously measured regional differences in the angle of friction of mine spoils or construction practices may explain the abundance of gullies and elevated level of landslide occurrence in eastern Kentucky valley fills relative to West Virginia. Observations of erosion on regionally extensive MTR/VF landscapes warrant further study to better ascertain ecological impacts. Large-scale alteration by surface mining in steep landscapes may generally lead to peripheral gully erosion. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Gully cut‐and‐fill dynamics are often thought to be driven by climate and/or deforestation related to population pressure. However, in this case‐study of nine representative catchments in the Northern Ethiopian Highlands, we find that neither climate changes nor deforestation can explain gully morphology changes over the twentieth century. Firstly, by using a Monte Carlo simulation to estimate historical catchment‐wide curve numbers, we show that the landscape was already heavily degraded in the nineteenth and early twentieth century – a period with low population density. The mean catchment‐wide curve number (> 80) one century ago was, under the regional climatic conditions, already resulting in considerable simulated historical runoff responses. Secondly, twentieth century land‐cover and runoff coefficient changes were confronted with twentieth century changing gully morphologies. As the results show, large‐scale land‐cover changes and deforestation cannot explain the observed processes. The study therefore invokes interactions between authigenic factors, small‐scale plot boundary changes, cropland management and sociopolitical forces to explain the gully cut processes. Finally, semi‐structured interviews and sedistratigraphic analysis of three filled gullies confirm the dominant impact of (crop)land management (tillage, check dams in gullies and channel diversions) on gully cut‐and‐fill processes. Since agricultural land management – including land tenure and land distribution – has been commonly neglected in earlier related research, we argue therefore that it can be a very strong driver of twentieth century gully morphodynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号