首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of the behavior of concrete under biaxial stresses is essential to the design of offshore concrete platforms. Using the multiaxial test apparatus developed by the authors, the deformation and strength of concrete under biaxial stresses are studied experimentally. Based on the test data, an endochronic damage constitutive model and a failure criterion are proposed. According to the above model, an incremental nonlinear iterative programme is developed, and a plate sample in plane stress state is analyzed.  相似文献   

2.
Experiments were made on plain concrete subjected to triaxial static loading and constant-amphtude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was O, O. lfc, O. 25fc and O. 4fc, respectively, for the static test, and O. lfc and O. 25fc for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis-Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S-N curve for multi-axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.  相似文献   

3.
- The characteristics of deformation and strength of concrete under the plane strain condition are studied experimentally with the triaxial apparatus designed by the authors and are compared with those under the plane stress condition. A formula of stress transformation between plane stress and plane strain conditions is proposed for the elasto-plastic state, and it provides a theoretical basis for simplifying nonlinear analysis and fully using the strength of concrete.  相似文献   

4.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3-4% and initial water content of 165-175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

5.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3–4% and initial water content of 165–175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

6.
刘军  林皋  钟红 《中国海洋工程》2013,27(2):169-182
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.  相似文献   

7.
A kind of diatomaceous soft rock and its constitutive model are studied in this article. Based on Yin and Graham's (1999) 3-D elastic viscoplastic constitutive model, the formulation under a triaxial stress state is established, and it is used to simulate the time-dependent stress-strain behavior and effective stress path of consolidated undrained triaxial tests of both normally consolidated and overconsolidated soft rock. The comparison between the model predictions and measured results shows that their agreement is good. This demonstrates that the constitutive equation established here can be used to simulate the time-dependent stress-strain behavior of the soft rock under triaxial stress condition.  相似文献   

8.
A kind of diatomaceous soft rock and its constitutive model are studied in this article. Based on Yin and Graham's (1999) 3-D elastic viscoplastic constitutive model, the formulation under a triaxial stress state is established, and it is used to simulate the time-dependent stress-strain behavior and effective stress path of consolidated undrained triaxial tests of both normally consolidated and overconsolidated soft rock. The comparison between the model predictions and measured results shows that their agreement is good. This demonstrates that the constitutive equation established here can be used to simulate the time-dependent stress-strain behavior of the soft rock under triaxial stress condition.  相似文献   

9.
Abstract

This article presents a study of liquefaction resistance behaviour of sand using a cyclic triaxial test. The site investigation was performed, and frozen undisturbed specimens were taken from the Izumio site in Osaka, Japan. According to the evidence in 1995 Kobe Earthquake, the first two sand layers are vulnerable to undergo liquefaction. The effect of deviatoric stress on liquefaction resistance was focused on in this study. The excess pore pressure ratio, hysteresis loop, and effective stress path from the cyclic triaxial tests were reported. A multispring element model was employed to simulate the soil behaviour under cyclic loading. The results showed that applied deviatoric stress could influence the liquefaction resistance of sandy soil samples. The plots of the cyclic stress ratio versus the number of cycles to generate liquefaction known as a liquefaction resistance curve can be then constructed and compared with other sands.  相似文献   

10.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

11.
曲艺 《海岸工程》2008,27(3):53-58
通过普强高性能混凝土和普通混凝土的应力-应变全曲线试验研究,得到一系列应力-应变曲线。对普强高性能混凝土和普通混凝土的立方体抗压强度与棱柱体抗压强度的关系、棱柱体抗压强度与峰值应力所对应应变的关系及棱柱体抗压强度与初始弹性模量的关系进行了分析。结果表明,虽然普强高性能混凝土的力学性能与普通混凝土的力学性能存在一定的差别,但主要力学性能还是相似的。说明在不改变混凝土的力学性能的基础上通过对普通强度混凝土原材料的优选和配合比的优化能够提高混凝土的耐久性能。  相似文献   

12.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

13.
利用高压低温三轴仪对含水合物粉细砂进行剪切试验。分别用气饱和法与水饱和法制样,实现不同水合物饱和度和围压条件的三轴剪切,并分析含水合物砂的胶结作用对剪切特性的影响。试验结果表明:低饱和度时,气饱和与水饱和试样的偏应力差别不大;高饱和度时,制样方式对偏应力的影响较显著;水饱和试样的剪胀性大于气饱和试样,剪胀性随饱和度的升高和围压的降低而增大。峰值偏应力和稳态偏应力由黏聚力和摩擦力两部分组成,水合物的存在对稳态内摩擦角影响不大。  相似文献   

14.
This article presents results from a series of Ko-consolidated compression and extension triaxial tests on specimens from undisturbed samples of Hong Kong Marine Deposits (HKMD). To investigate the strain-rate effects, a total of seven Ko-consolidated triaxial tests were conducted including four compression tests and three extension tests. After Ko-consolidation, the triaxial test specimens were sheared at step-changed axial strain rates under three different confining pressures of 50 kPa, 150 kPa, and 400 kPa, respectively. The step-changed strain rates were applied in the following order: +2%/h, +0.2%/h, +20%/h, -2%/h (unloading) and +2%/h (reloading) for the four compression tests and -2%/h, -0.2%/h, -20%/h, +2%/h (unloading) and -2%/h (reloading) for the three extension tests. The results are reported and analyzed in the paper. The results show that the strain rate effects, the stress-strain characteristics, and the effective stress paths of the specimens for tests in a compression state are different from those for tests in an extension stage. One order of magnitude increase in axial strain rate causes an average 8.6% increase in undrained shear strength for compression tests and a 12.1% increase for extension tests. It is also found that the failure mode of the specimens in compression is different from that in extension. The stress-strain behavior of specimens shows strain-softening and a clear shear band in compression tests, but strain-hardening without any clear shear band in extension tests for the same absolute value of axial strain.  相似文献   

15.
利用水饱和法制备含天然气水合物试样,进行等向压缩试验和不排水三轴试验.采用天然气水合物临界状态(M HCS)模型同时预测排水条件和不排水条件下的三轴试验,并进行变动参数分析.不排水条件下,密实纯砂发生应变硬化,而相近密实度的含水合物试样出现应变软化,峰值偏应力随水合物饱和度和围压增大.通过与排水和不排水三轴试验结果的对...  相似文献   

16.
To reveal the influence of material composition on mechanical properties of light-weight soil, stress-strain -volumetric strain characteristics and Poisson's ratio of mixed soil were researched by consolidated drained shear tests. The results show that light-weight soil is a kind of structural soil, so its mechanical properties are affected by mixed ratio and confining pressure, and mixed soil possesses structural yield stress. When confining pressure is less than the structural yield stress, strain softening occurs; when confining pressure is more than the structural yield stress, strain hardening is observed. There are two kinds of volume change behavior: shear contraction and shear dilatancy. Shear dilatancy usually leads to strain softening, but there isn't an assured causal relationship between them. Poisson's ratio of mixed soil is a variational state parameter with the change of stress state, it decreases with increased confining pressure, and it increases with increased stress level. When axial strain is near 5%, Poisson’ ratio is gradually close to a steady value. The main range of Poisson's ratio is 0.25~0.50 when confining pressure changes from 50 to 300 kPa. When unconfined compressive strength of mixed soil is less than 328 kPa, its stress-strain-volumetric strain characteristics can be predicted very well by Duncan-Chang model (E-B model). However, when the range of unconfined compressive strength is [328 kPa, 566 kPa], the model can't predict stress-strain characteristics accurately when confining pressure is under 200 kPa, and it also can't predict the strong shear dilatancy phenomenon of mixed soil under low confining pressure.  相似文献   

17.
To investigate cyclic deformation behavior of natural soft marine clay-involved principal stress rotation, a series of undrained tests were conducted by using GDS hollow cylinder apparatus. The principal stress rotates 5000 cycles while the deviator stress was kept at a constant level. The tests results show that the deformation behavior of the tested samples are significantly dependent on cyclic stress ratio (CSR). Furthermore, different type of generation of axial strains occur under different CSRs. With the same CSR, the type of axial strain is different between that considering and ignoring principal stress rotation. When CSR is larger than CSR = 0.42 under principal stress rotation, the axial strain grows rapidly after a few cycles. Compared with the results conducted by cyclic triaxial results, the effect of principal stress rotation on the axial strain is significant.  相似文献   

18.
Unconfined and triaxial compression tests were carried out to examine the behavior of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged soils, and cement with respect to initial water content. The stress-strain behavior of LWS are analyzed with varying initial water content and silt contents of dredged soils, cement ratio, and confined stress. As initial water contents increase, the compressibility index increases and the preconsolidation pressure was vice versa. As initial water contents increase, the slope of stress-strain curve in elastic zone increases and strain rate at failure decreases and the strain rate at failure was not changed by the being of foams. As initial water contents increase, a compressive strength of LWS decreases. The decrement ratio of compressive strength of LWS with foams increases as cement content increases and initial water contents decreases. The compressive strength increases as silt contents increases.  相似文献   

19.
混凝土动态压缩试验及其本构模型   总被引:7,自引:0,他引:7  
按照地震荷载作用的速率范围,利用最新研制和改造的大型混凝土静,动试验系统,进行了4种数量级加载速率下混凝土轴向压缩试验,测得了混凝土动态强度,弹性模量,泊松比及应力-应变关系,根据加载条件和混凝土静,动态试验结果间的关系,建立了混凝土的动态本构模型,为地震区的混凝土结构,海上混凝土采油平台和核防御壳等结构受动荷载作用的分析提供参考。  相似文献   

20.
Settlement and Stability Analysis on Soft Clay Under Cyclic Loading   总被引:5,自引:0,他引:5  
The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycles is established based on the experimental data. With this relationship, a procedure is proposed for subsidence and stability analysis on soft clay under the action of cyclic loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号