首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

2.
In this study we use the ordinal logistic regression method to establish a prediction model, which estimates the probability for each solar active region to produce X-, M-, or C-class flares during the next 1-day time period. The three predictive parameters are (1) the total unsigned magnetic flux T flux, which is a measure of an active region’s size, (2) the length of the strong-gradient neutral line L gnl, which describes the global nonpotentiality of an active region, and (3) the total magnetic dissipation E diss, which is another proxy of an active region’s nonpotentiality. These parameters are all derived from SOHO MDI magnetograms. The ordinal response variable is the different level of solar flare magnitude. By analyzing 174 active regions, L gnl is proven to be the most powerful predictor, if only one predictor is chosen. Compared with the current prediction methods used by the Solar Monitor at the Solar Data Analysis Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC), the ordinal logistic model using L gnl, T flux, and E diss as predictors demonstrated its automatic functionality, simplicity, and fairly high prediction accuracy. To our knowledge, this is the first time the ordinal logistic regression model has been used in solar physics to predict solar flares.  相似文献   

3.
Powerful flares are closely related to the evolution of the complex magnetic field configuration at the solar surface. The strength of the magnetic field and speed of its evolution are two vital parameters in the study of the change of magnetic field in the solar atmosphere. We propose a dynamic and quantitative depiction of the changes in complexity of the active region: E=u×B, where u is the velocity of the footpoint motion of the magnetic field lines and B is the magnetic field. E represents the dynamic evolution of the velocity field and the magnetic field, shows the sweeping motions of magnetic footpoints, exhibits the buildup process of current, and relates to the changes in nonpotentiality of the active region in the photosphere. It is actually the induced electric field in the photosphere. It can be deduced observationally from velocities computed by the local correlation tracking (LCT) technique and vector magnetic fields derived from vector magnetograms. The relationship between E and ten X-class flares of four active regions (NOAA 10720, 10486, 9077, and 8100) has been studied. It is found that (1) the initial brightenings of flare kernels are roughly located near the inversion lines where the intensities of E are very high, (2) the daily averages of the mean densities of E and its normal component (E n) decrease after flares for most cases we studied, whereas those of the tangential component of E (E t) show no obvious regularities before and after flares, and (3) the daily averages of the mean densities of E t are always higher than those of E n, which cannot be naturally deduced by the daily averages of the mean densities of B n and B t.  相似文献   

4.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

5.
We experiment with a method of measuring the frequency of solar p modes, intended to extend the passband for the variations of the frequency spectrum as high as possible. So far this passband is limited to a fraction of μ Hz for the classical analysis based on numerical fits of a theoretical line profile to a power spectrum averaged over periods lasting at least several weeks. This limit for the present analysis can be shifted to the mHz range, corresponding to some of the “5 min” oscillations, but in this range we use a lower resolution which allows us to separate odd and even p modes. We show an example of the results for long term variations and apply this analysis to search for a modulation of the p‐mode frequency spectrum by asymptotic series of solar g modes. A faint signal is found in the analysis of 10 years of GOLF data. This very preliminary result possibly indicates the detection of a small number of g modes of degree l = 1. A tentative determination of an observational value of the parameter P0 follows. P0 is the scaling factor of the asymptotic series of g modes and is a key data for solar core physics. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

7.
The temporal evolution of temperature in a dissolving granule and in an adjacent intergranular space is presented. The semi‐empirical evolutionary models have been calculated using an inversion method applied to 4‐min time series of Stokes I spectral line profiles. The models are presented in the form of the functional dependence of temperature T(log τ5, t) on optical depth τ5 at 500 nm and time t. The observed disappearance of the granule is accompanied with overall cooling of the granular photosphere. Temperature changes greater than 100 K have been found in deeper (log τ5 ≥ 0) and upper layers (log τ5 ≤ –2) whereas the intermediate layers are thermally stable. The intergranular space, which is 2 arcsec off the granule, keeps the temperature structure of the layers from log τ5 = 0.5 to log τ5 = –2 without global evolutionary changes except short‐term and spatially confined heating. Finally, the significant temperature changes in the upper layers (log τ5 ≤ 2.5) observed during the time interval of 4 min are found to be typical for the granular and intergranular photosphere.  相似文献   

8.
Two quiescent solar prominences were observed in July 2000 from SUMER aboard SOHO and from the two German solar telescopes at Tenerife. Two‐dimensional images taken at the VTT simultaneously in the spectral lines Hβ at 4862 Å and Ca II at 8542 Å show no significant spatial variation of their pressure‐sensitive emission ratio. Slit spectra of the Ca II 8542 Å and He I 10830 Å lines obtained at the Gregory‐Coudé telescope yield 8000 K < Tkin < 9000 K and 3 km/s < Vn–th < 8 km/s. Among the various spectral ranges observed with SUMER, we first investigate the Lyman emission lines, which were fitted by Gaussians yielding reliable spectral radiances and line widths for the series members 5 < k < 18. A determination of the level population gives for the lower series members a Boltzmann temperature of 60 000 K, the higher members being over‐populated. This temperature indicates an origin of the Lyman lines from hot surroundings of the cool prominence body seen in the ground‐based data; this also holds for the ‘hotter’ SUMER lines.  相似文献   

9.
Various solar wind forecasting methods have been developed during the past decade, such as the Wang?–?Sheeley model and the Hakamada?–?Akasofu?–?Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vr?nak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 Å images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25?–?125, 2005) as Vr?nak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is $\overline{|\delta|}\approx 12.15\%Various solar wind forecasting methods have been developed during the past decade, such as the Wang – Sheeley model and the Hakamada – Akasofu – Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vršnak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 ? images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25 – 125, 2005) as Vršnak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is . Furthermore, for the ten peaks during the analysis period, Pch and v show a correlation coefficient of R=0.78, and the average relative difference between the calculated and the observed peak values is . Moreover, the Pch factor can eliminate personal bias in the forecasting process, which existed in the method using CH area as input parameter, because CH area depends on the CH-boundary estimate but Pch does not. Until now the CH-boundary could not be easily determined since no quantitative criteria can be used to precisely locate CHs from observations, which led to differences in forecasting accuracy.  相似文献   

10.
Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the “sound-speed” difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R and that the strengths of magnetic-field effects at the surface and in the deeper (r<0.98R ) layers are inversely related (i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa). We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.  相似文献   

11.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
I present and discuss the fitting methodology I developed for very‐long time series (2088‐day‐long). This new method was first used to fit low degree modes, 𝓁 ≤ 25. That time series was also sub‐divided in somewhat shorter segments (728‐daylong) and also fitted for these low degrees, in order to measure changes with the solar activity level. I have recently extended the fitting in several “directions”: 1) to substantially higher degrees (𝓁 ≤ 125), 2) to shorter time series (364‐ and 182‐day‐long), and, 3) to additional 728‐day‐long segments, covering now some 10 years of observations. I present and discuss issues related to this expansion, namely problems at low frequencies affecting the f and p1 modes, and the inadequacy of the leakage matrix at higher degrees. I also present some of the characteristics of the observed temporal changes in the resulting frequencies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A gradient based algorithm which divides arbitrary images into non-overlapping surface filling tiles of opposite polarity is used to study the flux and size distributions of large scale magnetic flux concentrations in solar and heliospheric observatory (SoHO) magnetograms. The mean absolute flux and size of the concentrations at the considered scale is found to be about 1.7 &amp;#x00D7; 1018Mx and 5.2Mm for both polarities. The form of the flux distribution is characterized by a skewness of &amp;#x03B1;3 = 4.9 and a kurtosis of &amp;#x03B1;4 = 42.8. The fall in the distribution in the range 6.5 &amp;#x00D7; 1017 Mx to 5&amp;#x00D7;1018 Mx is described by an exponential fit, in agreement with a model for the sustenance of quiet region flux.  相似文献   

14.
The influence of the basic rotation on anisotropic and inhomogeneous turbulence is discussed in the context of differential rotation theory. An improved representation for the original turbulence leads to a Λ‐effect which complies with the results of 3D numerical simulations. The resulting rotation law and meridional flow agree well with both the surface observations (∂Ω/∂r < 0 and meridional flow towards the poles) and with the findings of helioseismology. The computed equatorward flow at the bottom of convection zone has an amplitude of about 10 m/s and may be significant for the solar dynamo. The depth of the meridional flow penetration into the radiative zone is proportional to ν0.5core, where νcore is the viscosity beneath the convection zone. The penetration is very small if the tachocline is laminar. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Results from kinematic solar dynamo models employing α ‐effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2–3 m s–1, having scaled the local quantities with the convective velocity at the bottom of the convection zone from a solar mixing‐length model. Rotation profile of the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface shear layer on the dynamo solutions. With these choices of the small‐ and large‐scale velocity fields, we obtain estimate of the ratio of the two induction effects, C α /C Ω ≈ 10–3, which we keep fixed in all models. We also include a one‐cell meridional circulation pattern having a magnitude of 10–20 m s–1 near the surface and 1–2 m s–1 at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the α ‐effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30° of latitude. Turbulent pumping of the mean fields is predominantly down‐ and equatorward. The anisotropies in the turbulent diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B r B ϕ . Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the α ‐effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5° … 60°). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar‐type solutions. The role of the surface shear layer is found to be important only in the case where the α ‐effect has an appreciable magnitude near the surface. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We study the general X-ray and multiwavelength characteristics of microflares of GOES class A0.7 to B7.4 (background subtracted) detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 26 September 2003 comparing them with the properties of regular flares. All the events for which X-ray imaging was feasible originated in one active region and were accumulated in areas with intermixed magnetic polarities. During the events’ rise and peak phase, the RHESSI X-ray spectra show a steep nonthermal power-law component (4?γ?10) for energies ??10 keV. Further evidence for the presence of electron beams is provided by the association with radio type III bursts in 5 out of 11 events where AIP radio spectra were available. The strongest event in our sample shows radio signatures of a type II precursor. The thermally emitting flare plasma observed by RHESSI is found to be hot, 11?T?15 MK, with small emission measures, 1046?EM?1047 cm?3, concentrated in the flare loop. In the EUV (TRACE 171 Å), the UV (TRACE 1600 Å) and Kanzelhöhe Solar Observatory Hα, impulsive brightenings at both ends of the RHESSI 3?–?6 keV X-ray loop source are observed, situated in opposite magnetic polarity fields. During the decay phase, a postflare loop at the location of the RHESSI loop source is observed in the TRACE 171 Å? channel showing plasma that is cooled from ??10 MK to ≈?1 MK. Correlations between various thermal and nonthermal parameters derived from the RHESSI microflare spectra compared to the same correlations obtained for a set of small and large flares by Battaglia et al. (Astron. Astrophys. 439, 737, 2005) indicate that the RHESSI instrument gives us a spectrally biased view since it detects only hot (T?10 MK) microflares, and thus the correlations between RHESSI microflare parameters have to be interpreted with caution. The thermal and nonthermal energies derived for the RHESSI microflares are \(\bar{E}_{\mathrm{th}}=7\times 10^{27}\) ergs and \(\bar{E}_{\mathrm{nth}}=2\times 10^{29}\) ergs, respectively. Possible reasons for the order-of-magnitude difference between the thermal and nonthermal microflare energies, which was also found in previous studies, are discussed. The determined event rate of 3.7 h?1 together with the average microflare energies indicate that the total energy in the observed RHESSI microflares is far too small to account for the heating of the active region corona in which they occur.  相似文献   

17.
The angular momentum transport in rotating turbulent convection is simulated with the NIRVANA code for Taylor numbers up to 106. The box consists of an unstable layer embedded in two stable overshoot layers. We find the expected anisotropies in the rotating anisotropic turbulence field: 〈u′2r〉 exceeds 〈u′2ϕ〉, and 〈u′2ϕ〉 exceeds 〈u′2θ〉. The resulting radial angular momentum transport is directed inwards and peaks in the middle of the convective layer. The resulting latitudinal angular momentum transport is equatorwards, peaks at the surface and is highly concentrated to the equatorial region. Apart from a factor of 2–3 the total amplitudes of the cross‐correlations are of the same order of magnitude. In the lower overshoot region (‘tachocline’) the cross‐correlations are negative. It is argued that the concentration of the latitudinal angular momentum transport towards the surface and towards the equator does not too strongly reduce its potential to produce rotation laws with accelerated equators. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The helioseismic instruments aboard the SOHO satellite make it possible to measure solar oscillations as variations of the irradiance (VIRGO) or as variations of the photospheric velocity (GOLF). Theoretically, phase differences between different photometric bands are expected to be around 0 degrees over the p‐mode frequency range. By using VIRGO (red) and VIRGO (blue) data, we find a mean phase shift of 8.05 ± 1.81°, whereas by using VIRGO (green) and VIRGO (blue) data, we got a mean value of –1.04 ± 0.19°. Hence, when the analysis includes the VIRGO infrared range, the Sun's atmosphere does not follow an exact adiabatic behavior. In this study, we use the phase shifts obtained by VIRGO (green) and VIRGO (blue) to determine the non‐adiabatic parameter phase lag (ψT) as a function of frequency. To this aim, we applied the non radial linearized formula put in the complex form by Garrido: we found a mean value of ψT = 179.95°. The lowest value being ψT = 179.90°, the departure from theoretical predictions is less then a tenth of a degree over the entire p mode frequency range. We can state that the solar atmosphere has a behavior close to the adiabatic case, when the phase shifts and amplitude ratios are computed using VIRGO (green) and VIRGO (blue) data. Nevertheless this small deviation is significant. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The behavioural features of the IMF Bz component for different solar wind velocity regimes have been studied. The study revealed a significant difference in variations of the Bz component between high-speed and low-speed regimes. Formation mechanisms for the IMF meridional component as well as the relationship of Bz with dynamical properties of the large-scale magnetic fields on the Sun are discussed.  相似文献   

20.
We have observed about 15 active regions on the Sun, with the Advanced Stokes Polarimeter and Dick Dunn Telescope at NSO/SP to map the Stokes parameters in the photospheric Fe 6302.5 Å and chromospheric Mg I 5173 Å lines, during 1999‐2002. The observations are corrected for dark current, gain, instrumental polarization and cross‐talk using ASP pipeline. The wavelength calibration is carried out using the O2 telluric line 6302 Å which is also present in the observations. The photospheric and chromospheric longitudinal magnetograms are made from the Stokes V profiles, which were intercalibrated with the Kitt Peak magnetograms. The plasma motions are inferred from the line bisector measurements at different positions of the spectral line. In this paper we present the height dependence of Doppler velocity scatter plots of a sunspot in the photospheric Fe I 6302 Å line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号