首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. Correlations on small angular scales are consistent with the the signal expected from adiabatic initial conditions. We detect excess power on large angular scales consistent with an early epoch of reionization. A model-independent fit to reionization optical depth yields results consistent with the best-fit ΛCDM model, with best-fit value τ=0.17±0.04 at 68% confidence, including systematic and foreground uncertainties.  相似文献   

2.
The remarkable improvement in the estimates of different cosmological parameters in recent years has been largely spearheaded by accurate measurements of the angular power spectrum of cosmic microwave background (CMB) radiation. This has required removal of foreground contamination as well as detector noise bias with reliability and precision. Recently, a novel model-independent method for the estimation of CMB angular power spectrum from multi-frequency observations has been proposed and implemented on the first year WMAP (WMAP-1) data by Saha et al. [Saha, R., Jain, P., Souradeep, T., 2006. ApJL, 645, L89]. We review the results from WMAP-1 and also present the new angular power spectrum based on three years of the WMAP data (WMAP-3). Previous estimates have depended on foreground templates built using extraneous observational input to remove foreground contamination. This is the first demonstration that the CMB angular spectrum can be reliably estimated with precision from a self contained analysis of the WMAP data. The primary product of WMAP are the observations of CMB in 10 independent difference assemblies (DA) distributed over five frequency bands that have uncorrelated noise. Our method utilizes maximum information available within WMAP data by linearly combining DA maps from different frequencies to remove foregrounds and estimating the power spectrum from the 24 cross-power spectra of clean maps that have independent noise. An important merit of the method is that the expected residual power from unresolved point sources is significantly tempered to a constant offset at large multipoles (in contrast to the l2 contribution expected from a Poisson distribution) leading to a small correction at large multipoles. Hence, the power spectrum estimates are less susceptible to uncertainties in the model of point sources.  相似文献   

3.
Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.  相似文献   

4.
We present VLBI observations of 6.7 and 12.2 GHz methanol masers in three star-forming regions, NGC7538, W75N and S252. Our results reveal linear structures in the VLBI maps and monotonic velocity gradients in the three sources. All these results are consistent with Keplerian disks of diameter of 1000–2000 AU around young stars of mass (10–30) M.  相似文献   

5.
We have computed and studied the mosaic correlation maps of the ILC WMAP microwave background data with the positions of infrared and submillimeter sources. Using the histograms of the signal values in pixels and angular power spectra, we studied the statistical properties of these maps. We discovered similar behavior of a number of harmonics in the maps of correlations with the FSC IRAS, 2MASX and Planck catalog objects. The most prominent multipoles among them, which may reflect the actual distribution of radiation sources are the = 6 for the FSC and Planck data, and = 3 for the Planck source data.  相似文献   

6.
We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value   B 0= 3 × 10−9 G  smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths  τ≳ 0.1  , although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe ( WMAP ) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for   z ≳ 15  . We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.  相似文献   

7.
We measure the 2-1 cumulant correlator power spectrum, a degenerate three-point statistic or integrated bispectrum, from the WMAP first and three year data releases (WMAP1 and WMAP2, respectively). We present a method of estimating these statistics using the pseudo-Cl-based SpICE estimator. We interpret the measurements in a maximum likelihood framework using theoretical predictions based on the simplest fNL model. All calculations are repeated on Monte Carlo simulations to obtain covariance matrices of our measurements. Application of the theory of random matrices revealed that the experimental covariances are consistent with a random matrix approximation. Finally, our χ2 analysis yields fNL = 22 ± 52(1σ) from WMAP2.  相似文献   

8.
The combined 3 year observations from the Wilkinson Microwave Anisotropy Probe (WMAP) have yielded full-sky temperature and polarization maps in five frequency bands (K, Ka, Q, V, W) between 23 and 94 GHz. In this article we discuss the cosmological implications of these observations. The combination of temperature and polarization data leads to a significant improvement in the measurement of the reionization optical depth τ = 0.093 ± 0.029. This, in turn, breaks a number of key degeneracies present in the constraints from temperature measurements alone allowing the WMAP CMB data on its own to offer a powerful insight into the universe’s constituents and the processes that generated the initial conditions for structure formation.  相似文献   

9.
In this paper, we study how to predict the polarization of the Cosmic Microwave Background (CMB) using knowledge of only the temperature (intensity) and the cross-correlation between temperature and polarization. We derive a “Wiener prediction” method and apply it to the Wilkinson Microwave Anisotropy Probe (WMAP) all-sky CMB temperature maps and to the MAXIMA field.  相似文献   

10.
We present a new method for analyzing the homogeneity of the microwave background maps, based on the behavior of the angular power spectrum C(). We realize the power spectrum dispersion variation of the background signal hemisphere in the form of a new map, which characterizes the homogeneity (or inhomogeneity) of the background in the second order. Applying our method we make an analysis of the seven-year WMAP mission signal for the maps with the resolution of ≤ 100. As a result, we discover the ILC signal asymmetry, linked with the ecliptic coordinate system, also revealed in the signal of the WMAP W-channel data.  相似文献   

11.
I present results of new statistical techniques for the interpretation of the temperature and polarization maps and power spectra of the cosmic microwave background. We show that the power deficit at low ℓ in the WMAP1 data is consistent with a statistical fluctuation at the 10% level; that future high S/N maps of the temperature and polarization anisotropies can be combined into a reconstruction of the metric perturbations imprinted during inflation; and that machine learning techniques can accelerate cosmological parameter estimation by orders of magnitude while being highly accurate and robust.  相似文献   

12.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

13.
We present a Chandra image of the quasar, jet, and lobes of PKS 1354+195 (=4C 19.44). The radio jet is 18 arcsec long, and appears to be very straight. The length gives many independent spatial resolution elements in the Chandra image while the straightness implies that the geometrical factors are constant along the jet although their values are uncertain. We also have 4 frequency radio images with half to one arcsecond angular resolution, and use HST and Spitzer data to study the broad band spectral energy distributions. The X-ray and radio spectra are both consistent with a spectrum f ν ν −0.7 for the integrated jet. Using that spectral index, the model of inverse Compton scattering of electrons on the cosmic microwave background (IC/CMB) gives magnetic field strengths and Doppler factors that are relatively constant along the jet. Extended X-ray emission is evident in the direction of the otherwise unseen counter-jet. X-ray emission continues past the radio jet to the South, and is detected within both the southern and northern radio lobes.  相似文献   

14.
We look for a non-Gaussian signal in the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-year temperature anisotropy maps by performing a needlet-based data analysis. We use the foreground-reduced maps obtained by the WMAP team through the optimal combination of the W, V and Q channels, and perform realistic non-Gaussian simulations in order to constrain the non-linear coupling parameter f NL. We apply a third-order estimator of the needlet coefficients skewness and compute the  χ2  statistics of its distribution. We obtain  −80 < f NL < 120  at 95 per cent confidence level, which is consistent with a Gaussian distribution and comparable to previous constraints on the non-linear coupling. We then develop an estimator of f NL based on the same simulations and we find consistent constraints on primordial non-Gaussianity. We finally compute the three-point correlation function in needlet space: the constraints on f NL improve to  −50 < f NL < 110  at 95 per cent confidence level.  相似文献   

15.
Neptune was observed by the Infrared Space Observatory (ISO) Long-Wavelength Spectrometer (LWS) between 46 and 185 μm. At wavelengths between 50 and 110 μm the accuracy of these measurements is ?0.3 K. Observations of this planet made by the ISO Short-Wavelength Spectrometer between 28 and 44 μm were combined with the LWS data to determine a disk-averaged temperature profile and derive several physical quantities. The combined spectra are matched best by a He/(H2+He) mass ratio of 26.4+2.6−3.5%, reflecting a He molar fraction of 14.9+1.7−2.2%, assuming the molar fraction of CH4 to be 2% in the troposphere. This He abundance is consistent with one derived from analysis of joint Voyager-2 IRIS and radio occultation experiment data, a technique whose accuracy has recently been called into question. For a disk average, the para-H2 fraction is found to be no more than ∼1.5% different from its equilibrium value, and the N2 mixing ratio is probably less than 0.7%. The composite spectrum is best fit by invoking a CH4 ice condensate cloud. Using a Mie approximation to particle scattering and absorption, best-fit particle sizes lie between 15 and 40 μm. The composite spectra are relatively insensitive to the vertical distribution of the cloud, but the particle scale height must be greater than 5% of the gas scale height. The best models are consistent with an effective temperature for Neptune that is 59.5±0.6 K, a value slightly lower than derived by the Voyager IRIS experiment—possibly Neptune's mid- and far-infrared emission has changed during the seven years that lie between its encounter with Voyager 2 and the first spectra taken of this planet with ISO. The model spectra are also ostensibly lower than ground-based observations in the spectral range of 17-24 μm, but this discrepancy can be relieved by perturbing the temperature of the lower stratosphere where the LWS spectrum is not particularly sensitive, combined with the uncertainty in the absolute calibration of the ground-based measurements.  相似文献   

16.
Nearby interstellar clouds with high (|ν|≥10km s−1) random velocities although easily detected in NaI and CaII lines have hitherto not been detected (in emission or absorption) in the HI 21cm line. We describe here deep Giant Metrewave Radio Telescope (GMRT) HI absorption observations toward radio sources with small angular separation from bright O and B stars whose spectra reveal the presence of intervening high random velocity CaII absorbing clouds. In 5 out of the 14 directions searched we detect HI 21cm absorption features from these clouds. The mean optical depth of these detections is ∼0.09 and FWHM is ∼10km s−1, consistent with absorption arising from CNM clouds.  相似文献   

17.
One of the main obstacles for extracting the Cosmic Microwave Background (CMB) from mm/submm observations is the pollution from the main Galactic components: synchrotron, free‐free and thermal dust emission. The feasibility of using simple neural networks to extract CMB has been demonstrated on both temperature and polarization data obtained by the WMAP satellite. The main goal of this paper is to demonstrate the feasibility of neural networks for extracting the CMB signal from the Planck polarization data with high precision. Both auto‐correlation and cross‐correlation power spectra within a mask covering about 63 % of the sky have been used together with a “high pass filter” in order to minimize the influence of the remaining systematic errors in the Planck Q and U maps. Using the Planck 2015 released polarization maps, a BB power spectrum have been extracted by Multilayer Perceptron neural networks. This spectrum contains a bright feature with signal to noise ratios 4.5 within 200 ≪ l ≪ 250. The spectrum is significantly brighter than the BICEP2 2015 spectrum, with a spectral behaviour quite different from the “canonical” models (weak lensing plus B‐modes spectra with different tensor to scalar ratios). The feasibility of the neural network to remove the residual systematics from the available Planck polarization data to a high level has been demonstrated. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A remarkable similarity between the large-scale non-Gaussian pattern of cosmic microwave background (CMB) temperatures obtained by the Wilkinson Microwave Anisotropy Probe ( WMAP ) mission and the distribution features of observation numbers is noted. Motivated by such a similarity, in this work we check the WMAP data for the correlation between pixel temperature t and observation number N . Systematic effects of imbalance in the differential observations and significant t – N correlations in magnitude, distribution of non-Gaussianity and north–south asymmetry are found. Our results indicate that, for precision cosmology studies based on WMAP observations, the observation effect on released WMAP temperature maps requires further careful study.  相似文献   

19.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号