首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8-year database of sea surface temperature (SST), 7 years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color images, wind fields, and numerical model results are analyzed to identify regions and periods of coastal upwelling on the western and southern shelves of the Gulf of Mexico. On the seasonal scale, it is found that on the Tamaulipas, Veracruz, and southwestern Texas–Louisiana shelves there are upwelling favorable winds from April to August, when southeasterly winds are dominant and cold SST anomalies associated with upwelling are observed along their coasts. However, during summer, values of chlorophyll-a concentration are lower than those in autumn and winter, which are high due to advection of old bloom biological material from upstream. During winter, there is a cold front on the Tamaulipas shelf produced by advection of cold water from the Texas–Louisiana shelf and not due to upwelling. On the eastern Campeche Bank, persistent upwelling is observed due to favorable winds throughout the year with cold SST and large chlorophyll-a content along the inner shelf from May to September. On the Tamaulipas shelf, the summer upwelling delays the annual SST peak until September, while in most of the Gulf SST peaks in August. This difference is due to the end of the upwelling favorable wind conditions and the September seasonal current reversal.  相似文献   

2.
Coupled assimilation for an intermediated coupled ENSO prediction model   总被引:4,自引:0,他引:4  
Fei Zheng  Jiang Zhu 《Ocean Dynamics》2010,60(5):1061-1073
The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind–ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997–2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.  相似文献   

3.
One of the main challenges of the Copernicus Marine Service is the implementation of coupled ocean/waves systems that accurately estimate the momentum and energy fluxes provided by the atmosphere to the ocean. This study aims to investigate the impact of forcing the Nucleus for European Modelling of the Ocean (NEMO) ocean model with forecasts from the wave model of Météo-France (MFWAM) to improve classical air-sea flux parametrizations, these latter being mostly driven by the 10-m wind. Three wave-related processes, namely, wave-state-dependent stress, Stokes drift-related effects (Stokes-Coriolis force, Stokes drift advection on tracers and on mass), and wave-state-dependent surface turbulence, are examined at a global scale with a horizontal resolution of 0.25°. Three years of sensitivity simulations (2014–2016) show positive feedback on sea surface temperature (SST) and currents when the wave model is used. A significant reduction in SST bias is observed in the tropical Atlantic Ocean. This is mainly due to the more realistic momentum flux provided by the wave model. In mid-latitudes, the most interesting impact occurs during the summer stratification, when the wind is low and the wave model produces a reduction in the turbulence linked with wave breaking. Magnitudes of the large-scale currents in the equatorial region are also improved by 10% compared to observations. In general, it is shown that using the wave model reduces on average the momentum and energy fluxes to the ocean in tropical regions, but increases them in mid-latitudes. These differences are in the order of 10 to 20% compared with the classical parametrizations found in stand-alone ocean models.  相似文献   

4.
An important part of the influence of the oceans on the atmosphere is through direct radiation, sensible heat flux and release of latent heat of evaporation, whereby all of these processes are directly related to the surface temperature of the oceans. A main effect of the atmosphere on the oceans is through momentum exchange at the air-ocean interface, and this process is directly related to the surface wind stress. The sea surface temperature (SST) and the surface wind stress are the two important components in the air-ocean system. If SST is given, a thermally forced boundary layer atmospheric circulation can be simulated. On the other hand, if the surface wind stress is given, the wind-driven ocean waves and ocean currents can be computed.The relationship between SST and surface wind is a coupling of the atmosphere and the oceans. It changes a one-way effect (ocean mechanically driven by atmosphere, or atmosphere thermally forced by oceans) into two-way air-sea interactions. Through this coupling the SST distribution, being an output from an ocean model, leads to the thermally forced surface winds, which feeds back into the ocean model as an additional forcing.Based on Kuo's planetary boundary layer model a linear algebraic equation is established to link the SST gradient with the thermally forced surface wind. The surface wind blows across the isotherms from cold to warm region with some deflection angle to the right (left) in the Northern (Southern) Hemisphere. Results from this study show that the atmospheric stratification reduces both the speed and the deflection angle of the thermally forced wind, however, the Coriolis' effect increases the wind speed in stable atmosphere (Ri>10–4) and increases the deflection angle.  相似文献   

5.
We investigate the relationship between sea surface temperature (SST) cooling and upwelling along Papua New Guinea’s (PNG) north coast before the onset of El Niño events using a hindcast experiment with a high-resolution ocean general circulation model. Coastal upwelling and related SST cooling appear along PNG north coast during the boreal winter before the onsets of six El Niño events occurring during 1981–2005. Relatively cool SSTs appear along PNG north coast during that time, when anomalous northwesterly surface wind stress, which can cause coastal upwelling by offshore Ekman transport appearing over the region. In addition, anomalous cooling tendencies of SST are observed, accompanying anomalous upward velocities at the base of the mixed layer and shallow anomalies of 27°C isotherm depth. It is also shown that entrainment cooling plays an important role in the cooling of the mixed layer temperature in this region.  相似文献   

6.
Climate models project a significant shoaling of the thermocline over the western equatorial Pacific Ocean under global warming, which has been generally regarded as a direct response to surface wind change. This study investigates the formation processes for the equatorial Pacific thermocline response to CO2 quadrupling using the Community Earth System Model version 1 (CESM1). In particular, an overriding method is applied to isolate and quantify the wind stress effect and the direct radiative effect of CO2 emissions. Results show that both effects of the wind stress and direct radiative forcing are equally important for shoaling the equatorial thermocline, with the former responsible for its upper portion change and the latter for its lower portion change. Further passive tracer experiments with the ocean component of the CESM1 verify the role of ocean surface warming in shoaling the equatorial thermocline and identify the ocean circulation change in response to the surface warming as its dynamic cause of formation.  相似文献   

7.
初值和海温强迫对延伸期可预报性时空分布的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用全球谱模式T106L19和增长模繁殖法,分别在气候海温和预测海温强迫下,进行了动力延伸集合预报试验.基于方差分析思想,利用集合预报结果,定义和计算了初值影响指数、海温强迫影响指数、潜在可预报性指数以及波动活动指数.通过分析四个指数,揭示了初值和海温强迫对延伸期可预报性时空分布以及潜在可预报性的影响,并探讨了其影响机理.结果表明:初值影响指数分布具有地域和季节的差异,初值的影响在中高纬度地区大于热带地区;相同季节,海温强迫影响指数分布与初值影响指数分布相似;潜在可预报性指数呈带状分布,大值集中在热带地区,且在低纬度地区,高层的潜在可预报性大于低层;初值和海温强迫对延伸期可预报性时空分布的影响,依赖于大气环流形势,初值和海温强迫影响的显著区正是大气长波的活跃区和西风急流区,急流区的强风切变为长波活动提供了斜压不稳定能量,而长波的发展调控着初值和海温强迫的影响,这说明延伸期的可预报性具有明显的流依赖性,大气外强迫的作用也与大气内部的动力过程密切相关.  相似文献   

8.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   

9.
What dominates sea level at the coast: a case study for the Gulf of Guinea   总被引:1,自引:0,他引:1  
Sea level variations and extreme events are a major threat for coastal zones. This threat is expected to worsen with time because low-lying coastal areas are expected to become more vulnerable to flooding and land loss as sea level rises in response to climate change. Sea level variations in the coastal ocean result from a combination of different processes that act at different spatial and temporal scales. In this study, the relative importance of processes causing coastal sea level variability at different time-scales is evaluated. Contributions from the altimetry-derived sea-level (including the sea level rise due to the ocean warming and land ice loss in response to climate change), dynamical atmospheric forcing induced sea level (surges), wave-induced run-up and set-up, and astronomical tides are estimated from observational datasets and reanalyses. As these processes impact the coast differently, evaluating their importance is essential for assessment of the local coastline vulnerability. A case study is developed in the Gulf of Guinea over the 1993–2012 period. The leading contributors to sea level variability off Cotonou differ depending on the time-scales considered. The trend is largely dominated by processes included in altimetric data and to a lesser extent by swell-waves run-up. The latter dominates interannual variations. Swell-waves run-up and tides dominate subannual variability. Extreme events are due to the conjunction of high tides and large swell run-up, exhibiting a clear seasonal cycle with more events in boreal summer and a trend mostly related to the trend in altimetric-derived sea-level.  相似文献   

10.
Chen  Huan-Huan  Qi  Yiquan  Wang  Yuntao  Chai  Fei 《Ocean Dynamics》2019,69(11):1387-1399

Fourteen years (September 2002 to August 2016) of high-resolution satellite observations of sea surface temperature (SST) data are used to describe the frontal pattern and frontogenesis on the southeastern continental shelf of Brazil. The daily SST fronts are obtained using an edge-detection algorithm, and the monthly frontal probability (FP) is subsequently calculated. High SST FPs are mainly distributed along the coast and decrease with distance from the coastline. The results from empirical orthogonal function (EOF) decompositions reveal strong seasonal variability of the coastal SST FP with maximum (minimum) in the astral summer (winter). Wind plays an important role in driving the frontal activities, and high FPs are accompanied by strong alongshore wind stress and wind stress curl. This is particularly true during the summer, when the total transport induced by the alongshore component of upwelling-favorable winds and the wind stress curl reaches the annual maximum. The fronts are influenced by multiple factors other than wind forcing, such as the orientation of the coastline, the seafloor topography, and the meandering of the Brazil Current. As a result, there is a slight difference between the seasonality of the SST fronts and the wind, and their relationship was varying with spatial locations. The impact of the air-sea interaction is further investigated in the frontal zone, and large coupling coefficients are found between the crosswind (downwind) SST gradients and the wind stress curl (divergence). The analysis of the SST fronts and wind leads to a better understanding of the dynamics and frontogenesis off the southeastern continental shelf of Brazil, and the results can be used to further understand the air-sea coupling process at regional level.

  相似文献   

11.
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative datasets over the period 1993–2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy-forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason, OC shows significant correlation with SST and SSH. We show that the correlation with SST displays the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern.  相似文献   

12.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

13.
The impact of the choice of high-resolution atmospheric forcing on ocean summertime circulation in the Gulf of Lions (GoL; Mediterranean Sea) is evaluated using three different datasets: AROME (2.5 km, 1 h), ALADIN (9.5 km, 3 h), and MM5 (9 km, 3 h). A short-term ocean simulation covering a 3-month summer period was performed on a 400-m configuration of the GoL. The main regional features of both wind and oceanic dynamics were well-reproduced by all three atmospheric models. Yet, at smaller scales and for specific hydrodynamic processes, some differences became apparent. Inertial oscillations and mesoscale variability were accentuated when high-resolution forcing was used. Sensitivity tests suggest a predominant role for spatial rather than temporal resolution of wind. The determinant influence of wind stress curl was evidenced, both in the representation of a mesoscale eddy structure and in the generation of a specific upwelling cell in the north-western part of the gulf.  相似文献   

14.
We compared the estimates of surface drifter trajectories from 1 to 7?days in the equatorial Atlantic over an 18-month period with five eddying ocean general circulation model (OGCM) reanalyses and one observational product. The cumulative distribution of trajectory error was estimated using over 7,000?days of drifter trajectories. The observational product had smaller errors than any of the individual OGCM reanalyses. Three strategies for improving trajectory estimates using the ensemble of five operational ocean analysis and forecasting products were explored: two methods using a multi-model ensemble estimate and also spatial low-pass filtering. The results were insensitive to the method used to create the ensemble estimates, and by most measures, the results were better than the observational product. Comparison of relative skill of the various OGCM reanalyses suggested promising avenues for exploration for further improvements: forcing with higher frequency wind stress and quality control of input data. One of the lowest horizontal resolution OGCMs, with 1/4° longitude horizontal resolution, made the best trajectory estimates. The individual OGCMs were dominated by errors at spatial scales smaller than about 100 to 200?km, i.e., less than the local deformation radius. But buried in those errors were valuable signals that could be retrieved by combining all the OGCM velocity fields to produce a multi-model ensemble-based estimate. This estimate had skill down to spatial scales about 75?km. Results from this study are consistent with previous work showing that ensemble-mean forecast skill is superior to individual forecasts.  相似文献   

15.
To address some of the issues of project Year of Tropical Convection (YOTC) and the project ATHENA as ongoing international activities, an endeavor has been made for the first time to study the predictability of Indian summer monsoon in the backdrop of tropical predictability using 850 hPa atmospheric circulations with the high resolution (T1279) ECMWF model during the boreal summer of 2008 as one of the focus years of YOTC. The major findings obtained from the statistical forecast have been substantiated by the dynamical prediction in terms of the systematic error energy, its growth rate and the attribution of the dominant nonlinear dynamical processes to error growth. The systematic error energy of T1279 (16 km resolution) ECMWF model are generated in African landmass, India and its adjoining oceanic region, in near equatorial west Pacific and around the Madagascar region where the root mean square errors are observed and the zonal wind anomaly shows poor forecast skill. As far as the inadequate predictability of Indian summer monsoon by T1279 ECMWF model (revealed from the results of project ATHENA) is concerned, the systematic error energy and the error growth over Arabian Sea, in the eastern and western India due to the nonlinear convergence and divergence of error flux along with the erroneous Mascarene high may possibly be the determining factors for not showing any discernable improvement in Indian monsoon during the medium range forecast up to 240 h. This work suggests that the higher resolution of ECMWF model may not necessarily lead to the better forecast of Indian monsoon circulations during 2008 unless a methodology can be devised to isolate the errors due to the nonlinear processes that are inherent within the system.  相似文献   

16.
Surface winds are crucial for accurately modeling the surface circulation in the coastal ocean. In the present work, high-frequency radar surface currents are assimilated using an ensemble scheme which aims to obtain improved surface winds taking into account European Centre for Medium-Range Weather Forecasts winds as a first guess and surface current measurements. The objective of this study is to show that wind forcing can be improved using an approach similar to parameter estimation in ensemble data assimilation. Like variational assimilation schemes, the method provides an improved wind field based on surface current measurements. However, the technique does not require an adjoint, and it is thus easier to implement. In addition, it does not rely on a linearization of the model dynamics. The method is validated directly by comparing the analyzed wind speed to independent in situ measurements and indirectly by assessing the impact of the corrected winds on model sea surface temperature (SST) relative to satellite SST.  相似文献   

17.
Here, we address the sediment dynamics in the Black Sea based on analysis of remote sensing data from the Medium Resolution Imaging Spectrometer and numerical simulations with Nucleus for European Modelling of the Ocean model. Boundary conditions consist of realistic meteorological forcing, including significant wave height generated by wave prediction model. A number of sensitivity runs was analysed with the aim to find the most suitable parameters governing sediment fluxes. The comparison between numerical simulations and remote sensing data gives credibility to the quality of simulations. The combined effect of wind waves and currents in the bed layer controls the sediment resuspension that appears to be the major basin-wide source of sediment. Sensitivity experiments included or excluded different forcing terms, e.g. sediment flux from rivers enable to determine the spatial extensions of different point sources. It is concluded that wind-wave forcing is manifested in the sediment dynamics through episodic high energy events contributing to the increase of horizontal sediment fluxes over the northwestern shelf. Both satellite images and numerical model simulations demonstrated that the penetration of suspended sediment into the basin interior was governed by the dynamics of coastal and open-ocean eddies. While fine sediment at sea surface could cross the continental slope propagating into the open ocean, coarser fractions follow the bottom and their penetration into the open ocean is limited. The conclusion is thus that the deposition patterns correlate with the specific shape of Black Sea topography, and the largest depositions are observed in the area of continental slope.  相似文献   

18.
Due to limited in situ data and diagnostic numerical models, the summer circulation structure and formation mechanism in the Beibu Gulf have always been in controversy in the past 50 years. Therefore, a new three-dimensional hindcast model was built within the northwestern South China Sea(SCS), forced with the daily averaged wind, heat flux, lateral flux, as well as tidal harmonic and eight major rivers discharges. And the east boundary was set up far away off the Qiongzhou Strait(QS). Lastly, the model results were consistent with not only the synchronous observation data from the project 908 but also the historical observed data. As a result, the summer circulation structure was revealed that the southern Gulf was occupied by an anticyclonic eddy whereas the northern Gulf was dominated by a cyclonic gyre. Although the circulation major structure was stable, its area and strength had yearly and monthly oscillation. The other three sensitive experiments indicated that the circulations in the southern and northern Gulf were driven by the SCS circulation and monsoon wind, respectively. After the theoretical analysis of the potential vorticity budget, it was further revealed the circulation in the northern Gulf was driven by the positive wind stress curl in summer. Besides, the river discharge was also significant as the vertical circulation had two layer structures outside the mouth of the Red River. Generally, this work calls for the further research on other subjects, such as ocean biogeochemical or marine fisheries.  相似文献   

19.
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphereocean coupled model, we conducted two experiments(CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature(SST) modes to the occurrence of El Ni?o events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of El Ni?o events during the boreal autumn in an El Ni?o developing year. However, it weakens El Ni?o events or even promotes cold phase conversions in an El Ni?o decaying year. Therefore, the entire period of the El Ni?o is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the El Ni?o developing years, the positive Indian Ocean Dipole(IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer El Ni?o event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin(IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Ni?o decaying years. As a result, the El Ni?o event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the El Ni?o during the developing years, whereas the IOB mode affects the El Ni?o during the decaying years.  相似文献   

20.
Typhoon Nuri formed on 18 August 2008 in the western North Pacific east of the Philippines and traversed northwestward over the Kuroshio in the Luzon Strait where it intensified to a category 3 typhoon. The storm weakened as it passed over South China Sea (SCS) and made landfall in Hong Kong as a category 1 typhoon on 22 August. Despite the storm’s modest strength, the change in typhoon Nuri’s intensity was unique in that it strongly depended on the upper ocean. This study examines the ocean response to typhoon Nuri using the Princeton Ocean Model. An ocean state accounting for the sea-surface temperature (SST) and mesoscale eddy field prior to Nuri was constructed by assimilating satellite SST and altimetry data 12 days before the storm. The simulation then continued without further data assimilation, so that the ocean response to the strong wind can be used to understand processes. It is found that the SST cooling was biased to the right of the storm’s track due to inertial currents that rotated in the same sense as the wind vector, as has previously been found in the literature. However, despite the comparable wind speeds while the storm was in western Pacific and SCS, the SST cooling was much more intense in SCS. The reason was because in SCS, the surface layer was thinner, the vorticity field of the Kuroshio was cyclonic, and moreover a combination of larger Coriolis frequency as the storm moved northward and the typhoon’s slower translational speed produced a stronger resonance between wind and current, resulting in strong shears and entrainment of cool subsurface waters in the upper ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号