首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Previous studies have shown that saltmarsh macrophytes have a significant influence on sediment biogeochemistry, both through radial release of oxygen from roots and also via primary production and release of labile organic exudates from roots. To assess the seasonal influence of the needle rush, Juncus roemarianus, on saltmarsh sediment geochemistry, pore waters and sediments were collected from the upper 50 cm of two adjacent sites, one unvegetated and the other vegetated by Juncus roemarianus, in a Georgia saltmarsh during winter and summer. Pore waters collected at 1- to 2-cm intervals were analyzed for pH, alkalinity, dissolved phosphate, ammonium, Fe(II), Fe(III), Mn(II), sulfide, sulfate, and organic carbon. Sediments were collected at 5-cm intervals and analyzed for iron distribution in the solid phase using a two-step sequential extraction. The upper 50 cm of the sediment pore waters are mostly sulfidic during both winter and summer. The pore water and sediment geochemistry suggest organic matter degradation is coupled mostly to Fe(III) and sulfate reduction. In summer, there is greater accumulation of alkalinity, sulfide, ammonium, and phosphate in the pore waters and lower levels of ascorbate extractable Fe, which is presumed to be comprised primarily of readily reducible Fe(III) oxides, in the sediments, consistent with higher organic matter degradation rates in summer compared to winter. Lower pH, alkalinity, ammonium, and sulfide concentrations in sediments with Juncus, compared to nearby unvegetated sediments, is consistent with release of oxygen into the Juncus rhizosphere, especially during summer.  相似文献   

2.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

3.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

4.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

5.
The sediments of the Port Camargue marina (South of France) are highly polluted by Cu and As (Briant et al., 2013). The dynamics of these pollutants in pore waters was investigated using redox tracers (sulfides, Fe, Mn, U, Mo) to better constrain the redox conditions.In summer, pore water profiles showed a steep redox gradient in the top 24 cm with the reduction of Fe and Mn oxy-hydroxides at the sediment water interface (SWI) and of sulfate immediately below. Below a depth of 24 cm, the Fe, Mn, Mo and U profiles in pore waters reflected Fe and Mn reducing conditions and, unlike in the overlying levels, sulfidic conditions were not observed. This unusual redox zonation was attributed to the occurrence of two distinct sediment layers: an upper layer comprising muddy organic-rich sediments underlain by a layer of relatively sandy and organic-poor sediments. The sandy sediments were in place before the building of the marina, whereas the muddy layer was deposited later. In the muddy layer, large quantities of Fe and Mo were removed in summer linked to the formation of insoluble sulfide phases. Mn, which can adsorb on Fe-sulfides or precipitate with carbonates, was also removed from pore waters. Uranium was removed probably through reduction and adsorption onto particles. In winter, in the absence of detectable pore water sulfides, removal of Mo was moderate compared to summer.Cu was released into solution at the sediment water interface but was efficiently trapped by the muddy layer, probably by precipitation with sulfides. Due to efficient trapping, today the Cu sediment profile reflects the increase in its use as a biocide in antifouling paints over the last 40 years.In the sandy layer, Fe, Mn, Mo and As were released into solution and diffused toward the top of the profile. They precipitated at the boundary between the muddy and sandy layers. This precipitation accounts for the high (75 μg g−1) As concentrations measured in the sediments at a depth of 24 cm.  相似文献   

6.
Florida Bay is a shallow carbonate estuary in South Florida. It receives fresh waters from the Everglades that contribute a number of metals to the Bay. The Bay is the largest estuary in Florida with nearly pristine conditions. In this paper we report the first extensive studies of trace metals in the Bay. The seasonal distributions of trace metals (Sc, V, Cr, Co, Cu, Fe, Pb, Mn, Ni and Al) were determined on surface waters in Florida Bay and adjacent waters. The measurements in the Bay were made from May 2000 to May 2001, and the adjacent waters were sampled in September 2000 and May 2002. Most of the dissolved trace metals exhibited their maximum concentrations in summer, except Al and Pb that did not show any seasonal variability. The seasonal variations of the metals are related to the influx of fresh water from rainfall. The lowest concentrations are found during the dry season in the winter and the highest during the wet season in the summer. Several metals (V, Mn, Al, Sc, Fe, Co, Ni and Cr) exhibited their highest concentrations in the western zone of the Bay. These waters from agricultural areas are influenced by Gulf of Mexico waters, which carry metals coming from Barron, Broad and Shark rivers into the Bay. The Shark River always exhibited high concentrations of V, Mn, Al, Sc, Co and Cr. Other possible influences in the western and north-central zone of the Bay are from Flamingo Center, the creeks of Taylor Slough and the mangrove fringe of the Everglades. High concentrations of Al, Co, Ni, Cr, Cu, Fe, and Pb were detected in the eastern zone. The high values found in the northeast are influenced by Taylor Slough runoff and in the southeast by Key Largo, Tavernier Marina and the drainage from the main highway (US1) on Tavernier Key. The minimum concentrations for most of the metals were found in areas near the Key channels that exchange waters between Florida Bay and the Atlantic Ocean (Gulf Stream). The adjacent waters in the Atlantic side including the Gulf Stream waters showed very low concentrations for all the metals studied except for V. In the Bay correlations of V were found: (1) V with salinity and Al and (2) Sc with Si. Most of the other metals did not show any strong correlations with nutrients or salinity. Florida Bay is thus not a typical estuary due to the unique structure of its mud banks and multiple inputs of metals from the mangrove fringe in the north.  相似文献   

7.
Arsenic species including arsenite, arsenate, and organic arsenic were measured in the porewaters collected from Poyang Lake, the largest freshwater lake of China. The vertical distributions of dissolved arsenic species and some diagenetic constituents [Fe(II), Mn(II), S(−II)] were also obtained in the same porewater samples in summer and winter. In sediments the concentration profiles of total As and As species bound to Fe–Mn oxyhydroxides and to organic matter were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicate that, in the summer season, the concentrations of total dissolved As varying from 3.9 to 55.8 μg/L in sediments were higher than those (5.3–15.7 μg/L) measured in the winter season, while the concentrations of total As species in the solid phase varied between 10.97 and 25.32 mg/kg and between 7.84 and 30.52 mg/kg on a dry weight basis in summer and winter, respectively. Seasonal profiles of dissolved As suggest downward and upward diffusion, and the flux of dissolved As across the sediment–water interface (SWI) in summer and winter were estimated at 3.88 mg/m2 a and 0.79 mg/m2 a, respectively. Based on porewater profiles and sediment phase data, the main geochemical behavior of As was controlled by adsorption/desorption, precipitation and molecular diffusion. The solubility and migration of inorganic As are controlled by Fe–Mn oxyhydroxides in summer whereas they appear to be more likely controlled by both amorphous Fe–Mn oxyhydroxides and sulfides in winter. A better knowledge of the cycle of As in Poyang Lake is essential to a better management of its hydrology and for the environmental protection of biota in the lake.  相似文献   

8.
Geochemical and magnetic susceptibility studies of shelf sediments off Mangalore were carried out to understand the influence of rivers on sediment geochemistry, to study the elemental distribution patterns, and to evaluate the importance of the shelf as a source/sink for base metals. The contents of Cu, Pb, Mn, Fe and Al in the surficial sediments are lower by factors of 1.6–5.6, except Ca which is higher by a factor of 3.4 in relation to riverine suspended particulate matter (SPM). This is due to the seaward decrease of terrigenous influx which is reflected in the offshore protrusion of contours of Al, Fe, Cu, Zn, Ni and magnetic susceptibility values, particularly off Netravati and Gurpur rivers. Lower Mn content is also due to its remobilization from the anoxic-sulphidic shelf sediments. In contrast to the elements mentioned above, Ca increases seaward, suggesting that it is biogenic. The enrichment factor (EF) indicates that the surficial sediments are depleted in Cu, Zn and Mn compared to average shale and other anoxic sediments, and marginally enriched with Ni, Co, and Pb in relation to the average shale. However, a comparison between the EF of SPM of Netravati-Gurpur rivers in the hinterland and surficial sediments indicates that the latter are depleted in Mn and Co, but enriched with Ni, Pb, and Fe, thereby suggesting a source and a sink for the former and latter elements, respectively, to the Arabian Sea.  相似文献   

9.
《Applied Geochemistry》2000,15(5):551-566
Teflon strips were used in-situ in the bottom sediments at two sites in the Swan River Estuary to collect diagenetic Fe–Mn oxyhydroxides and monitor monthly changes in their morphology and trace element geochemistry. This study demonstrates that substantial concentrations of trace elements accumulate at the redox front during the formation of diagenetic Fe–Mn oxyhydroxides. It is likely that the Fe–Mn oxyhydroxides initially nucleate and grow on the Teflon strips via bacterial activity. Trace element geochemistry of the diagenetic Fe–Mn oxyhydroxides is influenced by changes in the supply of trace elements from either the bottom sediments and/or water column or changes in the physico-chemical status of bottom and porewaters. If sufficient diagenetic Fe–Mn oxyhydroxides are preserved in the upper layer(s) of the bottom sediment it is possible that diagenetic (secondary) trace element enrichment profiles may be produced which modify the historical input of natural or anthropogenic trace element sources. Alternatively, partial or complete dissolution of the diagenetic Fe–Mn oxyhydroxides in response to temporal changes in the redox status of the bottom sediment may lead to a substantial underestimate of trace element fluxes in historical bottom sediment profiles. This study highlights that considerable care must be taken when interpreting short- to long-term geochemical profiles in bottom sediments due to the possible occurrence of rapid, seasonally mediated diagenetic processes.  相似文献   

10.
《Applied Geochemistry》2002,17(9):1209-1218
Acid sulphate soils, common in the coastal areas of Finland, contribute strongly to high acid, S and metal loadings on adjacent surface waters. This, in turn, is causing significant harm to the aquatic ecology. There is, however, limited knowledge on the total amounts of acidity and chemical elements leached from these soils. The overall objective of this study was to determine geochemical patterns in acid sulphate soils and their parent sediments and, based on the identified patterns assess the extent, mechanisms and present state of leaching of major and trace elements from these soils. The distribution of pH, aqua regia extractable concentrations of P and metals (Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, Sr, Th, Ti, V, Zn) and total concentrations of S and C were determined in 30 vertical profiles collected in the 23 km2 large Rintala agricultural area (mid-western Finland) underlain largely with S-rich sediments. It was found that approximately 70% of the area consists of acid sulphate soils with a minimum pH<4.0, an average depth of 1.8 m, and S concentrations in the parent sediments varying from 0.24 to 1.04%. Acid sulphate soils have not developed where the S concentrations in the sediments are ⩽0.10% or where the concentrations of organic C in the soil zones are >4%. Four different methods were used to estimate the losses of chemical elements from the acid sulphate soils: (1) the concentrations in the soil were compared with those in the parent sediments, (2) due to indicated heterogeneities in several profiles, the vertical changes of the immobile Ti was used to re-calculate element losses, (3) element depletions in the acid sulphate soils (as compared to those in the parent sediments) were compared to the corresponding depletions in the non acid sulphate soils, (4) element concentrations in drainage waters were compared with those in the parent sediments. Based on these calculations, it was assessed that the percentual leaching of the aqua regia extractable fraction (total for S) has been as follows: S (40–50%), Na (30–50%), Mn (25–35%), Sr (15–20%), Ca–Ni–Co (approximately 10%), Mg–K–Zn (5–10%), Th–La–Cu–Al–P–Ti–Fe (<5%), and Ba–Cr–V (<1%). While it was possible to quite accurately estimate the percentages and thus the amounts of elements lost, it was not possible to estimate the rate of leaching as there is no available detailed information on dates when ditching activities and thus oxidation-acidification processes started. Other calculations indicated that the mobile S reservoir is still some 15 ton/hectare, which is huge but still smaller than the losses that have occurred since the area was drained (23–28 ton/hectare).  相似文献   

11.
Ten detailed vertical water column profiles were taken between April and November, 1979, in Esthwaite Water (English Lake district), a lake with high biological productivity and a seasonally anoxic hypolimnion. Measurements of the major-element particle composition (organic C, P, S, Si, Al, Ti, K, Mg, Ca, Fe, Mn, and Ba) and hydrochemical constituents (temperature, pH, dissolved oxygen, total suspended load, dissolved Fe, Mn, P, and Ba) were carried out. These have revealed new information about the mechanisms and kinetics of biogeochemical cycles in a lake.Pronounced seasonal cycles exist in which large excess concentrations (those unsupported by detrital components) of particulate organic C, Fe, Mn, P, S, Mg, K, Ba, and Ca are being generated and lost in situ in the water column (15m deep). In the epilimnion these elements (excepting Fe and Mn) are incorporated into the organic components of growing phytoplankton during the spring and summer. Simultaneously, in the hypolimnion there is a build-up and then a decrease in the excess concentrations of particulate C, P, S, Mg, K, Ba and Ca; this cycle is due to the indirect involvement of these elements with the iron redox cycle. As the hypolimnion becomes anoxic, dissolved ferrous Fe is released from the sediments and large concentrations of excess particulate iron (III) oxides accumulate; these oxides act as adsorbing substrates for the above mentioned elements. As conditions become more reducing, these same elements are solubilized as the iron (III) oxide particles are reduced to dissolved ferrous iron.Adsorption equations are derived from the field data which relate the concentration of excess particulate Fe to those of POC, P, S, Ca, Mg, Ba, and K. At the last stages of anoxia (before the lake overturns) large populations of bacteria and the formation of iron sulfide particles control the concentrations of excess particulate C, S, P, Mg, K, and Ca.  相似文献   

12.
The behaviour of trace elements (Al, As, Cd, Co, Cr,Cu, Fe, Mn, Ni, V, Zn) was studied in five humus-richstreams (dissolved organic carbon = 14–40 mg/L)impacted by acid sulphate soils developed in marinesulphide-bearing fine-grained sediments. During heavyrainfalls in autumn, on which the study focusses, themetals Al, Cd, Co, Cu, Mn, Ni and Zn are extensivelyleached from these acidic soils (pH = 2.5–4.5), whileAs, Cr, Fe and V are not leached more strongly fromthis soil type than from areas of till and peat. Aspeciation experiment, based on anion and cationexchange of the stream waters in the field, showedthat (1) the metals Al, Cd, Co, Mn, Ni and Zn aretransported in the streams mainly as inorganiccations, (2) Cu exists mainly in cationic form but isalso to a significant extent associated with dissolvedhumic substances, (3) Fe occurs mainly in the anionicfraction explained by organic coating on colloidal Feoxyhydoxides and (4) the hydrochemistry of As, Cr andV is complex as these elements may exist in severalunquantified anionic fractions and to a minor extentin cationic species/forms. Whereas the proportion ofacid sulphate soils in the catchments had a largeimpact on concentrations levels of several elements inthe stream waters, these soils did not have a largeaffect on the speciation of elements in water.  相似文献   

13.
《Applied Geochemistry》2002,17(8):1081-1092
Different types of fine-grained chemical precipitates were characterized in the surroundings of the pyrite-chalcopyrite mine of Libiola (Northern Italy). Both water chemistry and sediment composition were used to investigate metal mobility near the mine area. Local drainage waters were very acidic (with a pH as low as 2.5) and were rich in dissolved metals (Fe, Al, Cu, Zn, Mn, Ni). Sediments associated with low pH water (pH <4.5) were ochreous mixtures of schwertmannite and goethite with traces of jarosite. Their chemistry was dominated by Fe and they had, compared to other sediments investigated, low concentrations of other metals. When the acidity decreased gradually, other precipitates formed. At a pH of approximately 5, a poorly crystalline, whitish, Al-rich precipitate occurred. At a pH between 6 and 7, a poorly crystalline, blue, Cu (Zn) rich phase was present. These “sequential” precipitation events progressively reduced the metal loading typical of the acidic mine water when there was a gradual mixing with normal water. When a sudden mixing between normal waters (pH ∼8, Ca–HCO3, low metal bearing) and acidic waters took place, a rapid flocculation occurred of mixed precipitates containing Fe, Al and trace elements.  相似文献   

14.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

15.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

16.
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and forms depending on sedimentation environments, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of the surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in the total Fe content (2–8%) are accompanied by changes in the concentration of its reactive forms (acid extraction) and the concentration of dissolved Fe in the interstitial water (1–14 μM). Variations in the Mn content in sediments (0.03–3.7%) and the interstitial water (up to 500 μM) correspond to a high diagenetic mobility of this element. Changes in the valence of chemical elements results in the redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of sediments with a considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface sediments, where manganese oxyhydroxide dominates among oxidants, to deeper layers, where sulfate of interstitial water serves as the main oxidant. Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5–0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from sediments (Mn 0.05%).  相似文献   

17.
沉积物的元素地球化学特征是对沉积盆地水体环境以及古气候条件变化的响应。本文根据元素(Al、Fe、Mg、Ca、K、Na、P、V、Ni、Co、Cr、Cu、Zn、Sr、Ba、Cd、Li、Mn、Pb、Ti)的含量及其比值(Al/Ti、Fe/Mn、Sr/Ba、Mg/Ca、Sr/Ca、Na/Ca、V/Cr、Ni/Co、Ni/V)的变化,对三水盆地古近系心组红岗段生油层的沉积条件进行了系统分析。心组红岗段下部(亚段A)表现为较稳定的地球化学特征。各元素丰度及其比值指示这一时期陆源输入持续较高、且物源组成变化不大。由于海水入侵的影响,湖盆水体盐度相对较高,底部水体以弱氧化条件为主,O2-H2S界面位于水/沉积物界面附近。红岗段中上部(亚段B、C)的元素地球化学特征变化较为频繁且幅度很大,反映古气候和湖盆沉积条件的迅速变迁。在潮湿气候条件下,沉积物的地球化学特征表现为以Al、Ti为代表的外源元素含量及其比值较高,而Mg、Ca等盆内化学沉积元素含量较低。古氧气指标指示底部水体为还原环境,有利于有机质保存。因而,相应于较高的有机碳含量。在间歇性干旱时期,陆源输入减少,外源元素含量及其比值显著降低。随着蒸发作用的加强,水体盐度加大,内源元素丰度以及Mg/Ca、Sr/Ba、Sr/Ca和Na/Ca比值大幅度上升。底部水体为氧化环境,O2-H2S界面多位于水/沉积物界面或沉积物中。上述两种气候条件在红岗段中上部沉积时期交替出现。红岗段沉积后期由于淡水的长期输入,湖水出现逐渐淡化趋势。  相似文献   

18.
The accumulation and mobility of Fe, Mn, Al, Cu, Ni and Pb in the sediments of two lakes (Clearwater, pH 4.5; and McFarlane, pH 7.5) near Sudbury, Ontario have been investigated. The Al, Cu and Ni concentrations are expectedly relatively high in the overlying waters of Clearwater Lake and much lower for Al and Cu in McFarlane Lake. The low trace metal concentrations found in the anoxic porewaters of Clearwater Lake could be explained by a sharp increase in porewater pH concomitant with SO42 reduction and H2S production within the first 1–2 cm of the sediments, which has conceivably led to the precipitation of mineral phases such as AL(OH)3, NiS, and CuS. In both lakes, Fe concentrations in anoxic porewaters appear to be controlled by FeS and/or FeCO3 formation. Solubility calculations also indicate MnCO3 precipitation in McFarlane Lake. In Clearwater Lake, however, both porewater and total Mn were relatively low, a possible result of the continuous loss of Mn(II) through the acidic interface. It is suggested that upwardly decreasing total Mn profiles resulting from the removal of Mn from the top sediment layers under acidic conditions may constitute a reliable symptom of recent lake acidification.The downward diffusion of AI, Cu and Ni from the overlying water to the sediments has been estimated from their concentration gradients at the interface and compared to their total accumulation rates in the sediments. In both lakes the diffusion of Al is negligible compared to its accumulation rate. However, diffusion accounts for 24–52% of the accumulation of Cu in the sediments of Clearwater Lake, but appears negligible in McFarlane Lake. The downward diffusive flux of Ni is important and may explain 76–161% of the estimated Ni accumulation rate in Clearwater Lake, and 59% in McFarlane Lake. The porewater Cu and Ni profiles suggest that the subsurface sedimentary trace metal peaks observed in Clearwater Lake (as in other acid lakes) may not be caused by sediment leaching or by a recent reduction in sedimentation but may have a diagenetic origin instead. Diffusion to the sediments thus appears to be an important and previously overlooked trace metal deposition mechanism, particularly in acid lakes.  相似文献   

19.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

20.
The seasonal variation in the trace metals’ concentrations (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were investigated in surface sediments of the Pandoh Lake. The horizontal distribution of TC, TN, and TP reflects spatial and temporal differences in sedimentary organic production. The chemical sequential extraction of heavy metals was carried out by seven-step fractionation scheme (Leleyter and Probst in Int J Environ Chem 73:109–128, 1999). The significant concentrations of Ni and Cd were associated with “water soluble (Eua)” fraction in the monsoon and winter, respectively, while “exchangeable (Exch)” and “carbonate-bound (Carb)” fractions for Ni and Cd were abundant in winter and summer. The Cd, Cu, and Pb associated with “Exch” fraction in the summer season support their availability on exchange sites due to oxidized nature of surface sediments. Enrichment of Co, Fe, Mn, and Zn in “AFeO” fraction showed poor bioavailability, while Cd, Cu, and Mn in the monsoon, Co in the winter and summer, and Zn in the winter season showed significant “organically bound (Org)” fraction. The ANOVA was significant for chemical fractions of trace elements except “Carb” fraction of Pb and Zn and “CFeO” fraction of Pb. Factor analysis revealed that the “Eua”, “Exch”, and “Carb” fractions together control the metal enrichment of “MnO”, “AFeO”, and “CFeO” fractions in the summer season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号