首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A hypoplastic constitutive model for debris materials   总被引:1,自引:1,他引:0  
Debris flow is a very common and destructive natural hazard in mountainous regions. Pore water pressure is the major triggering factor in the initiation of debris flow. Excessive pore water pressure is also observed during the runout and deposition of debris flow. Debris materials are normally treated as solid particle–viscous fluid mixture in the constitutive modeling. A suitable constitutive model which can capture the solid-like and fluid-like behavior of solid–fluid mixture should have the capability to describe the developing of pore water pressure (or effective stresses) in the initiation stage and determine the residual effective stresses exactly. In this paper, a constitutive model of debris materials is developed based on a framework where a static portion for the frictional behavior and a dynamic portion for the viscous behavior are combined. The frictional behavior is described by a hypoplastic model with critical state for granular materials. The model performance is demonstrated by simulating undrained simple shear tests of saturated sand, which are particularly relevant for the initiation of debris flows. The partial and full liquefaction of saturated granular material under undrained condition is reproduced by the hypoplastic model. The viscous behavior is described by the tensor form of a modified Bagnold’s theory for solid–fluid suspension, in which the drag force of the interstitial fluid and the particle collisions are considered. The complete model by combining the static and dynamic parts is used to simulate two annular shear tests. The predicted residual strength in the quasi-static stage combined with the stresses in the flowing stage agrees well with the experimental data. The non-quadratic dependence between the stresses and the shear rate in the slow shear stage for the relatively dense specimens is captured.  相似文献   

2.
The 2008 Wenchuan earthquake induced a large number of landslides, and a vast amount of loose landslide materials deposited on steep hill slopes or in channels. Such loose materials can become sources of deadly debris flows once triggered by storms. On 13 August 2010, a storm swept Yingxiu and its vicinity, triggering a catastrophic debris flow with a volume of 1.17?million?m3 in Xiaojiagou Ravine. The debris flow buried 1,100?m of road, blocked a river and formed a debris flow barrier lake. A detailed field study was conducted to understand the initiation mechanisms and runout characteristics of this debris flow. Two types of debris flows are identified, namely hill-slope debris flow and channelized debris flow. The hill-slope debris flow was triggered in the forms of firehose effect, rilling and landsliding, whereas the channelized debris flow was triggered in the form of channel-bed failure. This debris flow was a water?Crock flow since most particles were gravel, cobble or larger rocks and the fraction of silt and clay was less than 2%. Grain contact friction, pore-pressure effects and inertial grain collision were the three most important physical interactions within the debris flow. Such interactions yielded a smaller runout distance (593?m) compared with those of mud?Crock flows of similar size.  相似文献   

3.
Two large, adjoining alluvial fans of the Panamint Range piedmont, Death Valley, California, are composed of different facies assemblages deposited by contrasting sedimentary processes. The Anvil Spring fan was built solely by water-flow processes (incised-channel floods and sheetfloods), whereas the neighbouring Warm Spring fan has been constructed principally by debris flows. The boundary between these fans delineates a sharp provincial piedmont contact between sheetflood-dominated fans to the south and debris-flow-dominated fans to the north. Factors such as climate, catchment area, fan area, catchment relief, aspect, vegetation types and density, and neotectonic setting are essentially identical for these two fans. The key difference between them is that their catchments are underlain by dissimilar bedrock types, which weather to yield distinctive sediment suites. Weathering of the granite and andesite of the Anvil fan catchment produces significant volumes of medium to very coarse sand, granules, pebbles, cobbles and boulders, but minimal silt and clay. In contrast, the shale, quartzite and dolomite that dominate bedrock in the Warm Spring catchment weather to yield a wide suite of sedimentary particles spanning from clay to boulders. The abundance of mud, and the unsorted character of the yielded sediment, cause precipitation-induced slope failures in the Warm Spring catchment to transform readily into debris flows. This propensity is due to the low permeability of the colluvial sediment, which causes added water to become trapped quickly and pore pressure to rise rapidly, promoting transformations to debris flows. In contrast, the limited volume of sediment finer than medium sand yielded from the Anvil fan catchment causes the colluvium to have high permeability. This factor prevents the transformation of wet colluvium to a debris flow during hydrologically triggered slope failures, instead maintaining sediment transport as entrained bed load or suspended load in a water flow.  相似文献   

4.
Debris flows occurring in well-vegetated alpine areas usually contain a range of sizes of woody debris. Large woody debris (LWD), which has a retaining effect on further transportation of debris downstream, is mainly distributed in upstream reaches, and the amount of small woody debris (SWD) deriving from LWD increases dramatically midstream and downstream. The Dongyuege (DYG) bouldery debris flow with a sandy-matrix took place in a wildwood area, causing 96 deaths and its clay-sized fraction does not contain typical clay minerals. However, its total travel distance and runout distance in a low-gradient reach (between 2° and 5°) upstream of the depositional fan apex reached 11 km and 3.3 km, respectively. The abundant SWD in the DYG debris flow might have played a crucial role in slurrying, persistence, and the long runout over the low gradient. To understand why this debris flow extended so far, slurrying experiments, pore water escape experiments, and excess pore pressure experiments were performed. Crude debris (CD) collected from the DYG debris flow deposit was used throughout the experiments, the tested materials of which are separated into CD-containing SWD with a maximum grain size (MGS?=?2 mm), purified debris (PD) without SWD with a MGS of 2 mm, and SWD <?2 mm in diameter. In the five slurrying experiments with PD-SWD-water mixtures, as the SWD content was elevated from 0.0 to 2.0 wt%, the current velocity of escaping pore water decreased uniformly from 17.2 to 0.9 mm/s. When the SWD content was 1.0 wt% or greater, the mixtures can be considered as one-phase flows of viscous fluids. The six pairs of pore water escape experiments based on the slurries remolded with CD and PD, respectively showed that the time needed for pore water to escape from the CD slurries was much greater than those from their PD counterparts. Also, measured was the dissipation rate of the relative excess pore pressure of CD and PD slurries of various densities and volumes, which showed that most of the rates of the PD-slurries were always greater than CD-slurries. Overall, the results show that SWD has a strong influence on the slurrying of the DYG debris without typical clay minerals found in other debris flows, and SWD helps to sustain the high excess pore pressure in the interior of the debris flow mass which resulted in the extended travel distance over such a low gradient. SWD favors the formation and stability of one-phase water-debris mixtures because of its large specific surface area and low density, which makes it able to absorb fine particles and able to be suspended in slurry flows over long timescales. In well-vegetated mountainous areas, SWD should be taken into account in the assessment of debris-flow hazards.  相似文献   

5.
Observations of many debris-flow deposits on gently-sloping alluvial fans have disclosed that debris commonly is heavily loaded with coarse clastic material and contains large isolated blocks. The paper describes how debris charged with coarse granular material can transport large blocks, yet flow on gentle slopes. Experimental results of mixing sand-sized particles with a slurry of clay plus water indicate that 45–55 vol. % of a single size, and up to 64% of two selected sizes, can be added before interlocking occurs. Theoretical analysis of multi-size classes suggest that 89 to more than 95 vol. % debris can be clastic materials without significant particle interlocking. The clay fraction, even if minor, plays a critical role in determining strength properties of debris. The mixture of clay plus water provides a cohesive slurry that supports fine-grained particles within the debris, as well as reduces the effective normal stresses between the particles. The increased unit weight of the clay plus water plus fine-grained particles allows the support of coarser grained particles. The pyramiding upon the clay-water slurry continues until the entire debris mass is supported in a virtually frictionless position because of the reduced effective normal stress and the lack of particle interlocking. Thus, the ability of debris flows to support large blocks can be understood in terms of the high unit weight of the displaced debris plus the strength of the fluid phase; that is, the blocks float in the debris as a result of a small density difference between the blocks and the debris, plus the cohesive strength of the clay-water slurry. Also, the ability of coarse clastic debris to flow on gentle slopes probably is a result of poor sorting of debris-flow materials which contain minor amounts of clay. The poor sorting allows the debris to have a high density yet have essentially no interlocking of clasts. The high density of the debris reduces effective normal stresses between clasts, thereby reducing apparent friction of the mixture.  相似文献   

6.
Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi‐laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep‐marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence‐enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi‐laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence‐enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence‐enhanced transitional flow and lower transitional plug‐flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi‐laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross‐stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12 000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain‐size segregation and longitudinal flow transformation.  相似文献   

7.
中国东南沿海平原晚第四纪超浅层生物气藏盖层研究   总被引:2,自引:0,他引:2  
根据晚第四纪地层的物性特征,力学性质及烃浓度值实验资料和孔隙水压力及其消散历时现场试验结果表明,覆盖下切河谷之上的的浅海相灰色淤泥质粘土层为区域盖层,下切河人的河漫滩相灰-灰黑色粘土及淤泥质粘土层为局部盖层。粉细砂、粉砂、粉砂质粘土、淤泥质粘土和粘土的粒径依次变小,比表面积依次增大,使其孔隙率、孔隙比、天然含水量及孔隙水压力值依次增大。粘土的压缩系数、塑性指数、液性指数及抗剪强度最大,其抗变形能力相对最弱,可压缩相对最大.相对封闭性最好;而淤泥质粘土、粉砂质牯土的封闭性次之。随着埋藏深度的增加.盖层的封闭性增强。盖层的封闭机理主要为物性封闭、烃浓度封闭和孔隙水压力封闭,后者可能对生物气藏保存起着最主要的封闭作用。  相似文献   

8.
《Tectonophysics》1999,301(1-2):1-19
We have done a series of simple tests on sandpacks, involving upward flow of compressed air through the pores and its effect on the yield strength. The ultimate objective is to model deformation coupled with fluid flow in sedimentary basins. For all tests, we used a single batch of Fontainebleau sand, sieved to a grain size between 0.200 and 0.315 mm, poured into a cylindrical container and then fluidized. The density of this sand was 1.585 g/cm3, irrespective of sand thickness. The lithostatic pressure was proportional to the thickness of the sandpack. A yield envelope was obtained by shearing the sandpack horizontally. Compressed air entered the base of the sandpack and flowed upwards through the pore spaces. For 69 measurements on air flow without shearing, a plot of discharge velocity versus gradient of fluid pressure is close to a straight line, verifying Darcy's law and yielding an intrinsic permeability of about 1.7 darcy for the sand. For 72 tests on simultaneous shearing and fluid flow, the estimated effective stress (lithostatic stress minus estimated pore fluid pressure) ranged from 0 to 1600 Pa and the pore fluid ratio (between air pressure and lithostatic pressure) from 0.0 to 1.0. A plot of shear stress versus effective stress at failure is almost linear, verifying Terzaghi's principle of effective stress. The best-fit slope (coefficient of internal friction) is about 0.55 and the intercept on the shear stress axis (cohesion) is less than 85 Pa. The tests show that it is feasible to use compressed air within sandpacks, as a means of modelling deformation coupled with fluid flow. The next step will be to build sandbox models of layered sequences and to investigate detachments caused by abnormal fluid pressures.  相似文献   

9.
Flexible barriers undergo large deformation to extend the impact duration, and thereby reduce the impact load of geophysical flows. The performance of flexible barriers remains a crucial challenge because there currently lacks a comprehensive criterion for estimating impact load. In this study, a series of centrifuge tests were carried out to investigate different geophysical flow types impacting an instrumented flexible barrier. The geophysical flows modelled include covered in this study include flood, hyperconcentrated flow, debris flow, and dry debris avalanche. Results reveal that the relationship between the Froude number, Fr, and the pressure coefficient α strongly depends on the formation of static deposits called dead zones which induce static loads and whether a run-up or pile-up impact mechanism develops. Test results demonstrate that flexible barriers can attenuate peak impact loads of flood, hyperconcentrated flow, and debris flow by up to 50% compared to rigid barriers. Furthermore, flexible barriers attenuate the impact load of dry debris avalanche by enabling the dry debris to reach an active failure state through large deformation. Examination of the state of static debris deposits behind the barriers indicates that hyperconcentrated and debris flows are strongly influenced by whether excessive pore water pressures regulate the depositional process of particles during the impact process. This results in significant particle rearrangement and similar state of static debris behind rigid barrier and the deformed full-retention flexible barrier, and thus the static loads on both barriers converge.  相似文献   

10.
有效应力参数的合理确定是非饱和土有效应力研究的重要内容。然而,现有的有效应力参数未能较好地考虑孔隙水的微观赋存形态对有效应力的影响。为此,分析了孔隙水的微观赋存形态,明确了孔隙水可分为收缩膜、吸附水和毛细水,建立了非饱和粉土的扩展三相孔隙介质模型,即孔隙气、毛细水和广义土骨架。基于该模型,采用分相平衡分析法,推导了非饱...  相似文献   

11.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

12.
杨德欢  颜荣涛  韦昌富  张敏  张芹 《岩土力学》2016,37(12):3529-3536
通过对重塑粉质黏土的液、塑限和固结慢速直剪试验,探讨了粉质黏土液限、塑性指数及抗剪强度与不同浓度NaCl孔隙溶液的关系。试验结果表明,随着孔隙溶液浓度增加,液限随之减小,塑性指数表现出粉土的性质;不同竖向正应力下的强度随浓度变化表现出较大的差异,正应力较低时,强度不断减小,而正应力较高时,则强度不断增大,正应力介于二者之间强度则先降后升;内摩擦角随浓度增加而增大,最终趋于稳定;黏聚力先迅速减小后逐渐回升,且均为负值。其性质变化主要是因为扩散双电层、颗粒间作用力以及孔隙比发生了改变。基于Terzaghi的有效应力原理,对饱和粉质黏土固结慢速直剪试验测得的负值黏聚力进行了分析和讨论,认为渗透压力对黏聚力起了非常重要的作用,从而使黏聚力成为负值。  相似文献   

13.
After the 2008 Wenchuan earthquake, mountainous areas in SW China are recognized as a region with highly active and perilous landslides and debris flows. The frequent impacts of debris flow are a major threat to bridge piers located in debris flow gullies. It is an important issue for guaranteeing the safety of railway bridges in areas prone to hazardous debris flows. Previous research has achieved significant results characterizing the initiation and mechanisms for debris flow, and their interactions with some structures. However, there has been little research on the dynamic pressure of debris flow on bridge pier caused by different debris flows. In this study, the measurement and estimation of the impact pressure and dynamic behavior of debris flows on scaled bridge piers were conducted. Nine pressure sensors were used to measure the impact pressure of debris flows. Flow velocities and flow depths were determined at the end of a flume using a high-speed camera. The results show that the impact pressure differed between different types of debris flows. The distribution of impact pressures from high-viscosity debris flows indicated three layers, with different features in individual event. In comparison, a layered structure was not observed in low-viscosity debris flows. Based on dimensional analyses, the impact pressure depended on Froude number (Fr) and Reynolds number (Re). For low-viscosity debris flows, the dimensionless impact pressures were power functions of Fr, while for high-viscosity debris flows, the dimensionless impact pressures were power functions of both Re and Fr. The impact frequencies of low-viscosity and high-viscosity debris flows showed considerable differences based on spectral analysis. Compared to high-viscosity debris flows, low-viscosity debris flows were characterized by relatively high velocity, strong striking pressure, and high impact frequency.  相似文献   

14.
Drag reduction has been observed in suspension flows of low clay concentrations in previous studies. Here, velocity profiles and bed shear stresses, expressed as shear velocities, are measured using epoxy-coated hot-film sensors to evaluate drag reduction and controlling factors in suspension flows of high clay concentrations (4 and 8 g l–1). The directly measured shear velocity in the viscous sublayer is found to be reduced by as much as 70% relative to the profile-derived shear velocity in the logarithmic layer. Drag reduction is found to increase with increasing clay concentration and decreasing flow strength. Density profile data indicate that the suspension flows were not stratified, and examinations of particle size distributions suggest that flocculation was not significant in causing the observed drag reduction. Measurements of the velocity profiles and of the shear velocity in the viscous sublayer indicate significant thickening of the inner wall layer and show turbulence damping in the viscous sublayer. These effects become stronger for higher concentrations and lower flow strength, suggesting that they are responsible for drag reduction in flows of clay suspension. Empirical relationships have been derived that can be used to predict the magnitude of drag reduction and the reduced shear stress in mud suspensions for both laboratory and field cohesive sediment transport studies.  相似文献   

15.
在我国西部山区地震、地质活跃带,泥石流灾害对位于泥石流沟道、沟口等位置处的桥墩构成重大威胁。如何量化描述泥石流冲击桥墩的动力过程,是泥石流减灾领域拟要解决的一个重要科学问题。以泥石流灾害威胁成兰铁路沿线桥墩的工程背景为基础,依托大型泥石流模拟系统,进行多组室内大比例泥石流冲击桥墩物理模型试验。研究泥石流流速、流深以及流体特征参数与泥石流冲击压力的相关性。试验结果表明:冲击过程主要受到弗汝德数Fr和雷诺数Re两个无量纲数控制,稀性泥石流冲击压力主要控制参数为Fr,而对于黏性泥石流则同时有Fr和Re的影响;不论是对于峰值冲击力还是冲击功率谱,不同类型泥石流差别显著;在相同重度等条件下,稀性泥石流具有更大的冲击能量;此外,各种类型泥石流通过临界Fr线得到了本质上的区分。研究成果将为桥墩抗泥石流冲击结构设计提供技术支持及科学依据。  相似文献   

16.
广西红黏土分布区柴油泄漏对土体造成了一定程度污染,为研究轻质非水相非极性柴油孔隙液对红黏土力学性质的影响,本文以0#柴油为添加剂对其重塑样进行不排水快速直剪试验,测得了不同含水率、含油率、法向压力下红黏土抗剪强度及其参数变化规律。研究结果表明:在土-水-油系统中,非极性柴油孔隙液对红黏土强度影响相对较小,且受含水率影响。同一含油率时,红黏土抗剪强度、内摩擦角、黏聚力均随含水率增加而降低;同一含水率时,法向压力影响柴油作用模式,随含油率增加,抗剪强度参数变化较为复杂,当含水率为20%,红黏土内摩擦角、黏聚力反向波动变化;同一含湿率时,柴油比例的提高导致红黏土抗剪强度参数的增大。扫描电镜观察发现,非极性柴油孔隙液的介入,改变了水-土系统的静电及结构模式,导致红黏土强度发生变化,通过所建的“多尺度多阶段柴油作用微结构模型”,阐明了柴油孔隙液对红黏土强度特性影响的微观机理。  相似文献   

17.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

18.
In the Alps, debris flow deposits generally contain <5% clay‐size particles, and the role of the surface‐charged <2 μm particles is often neglected, although these particles may have a significant impact on the rheological properties of the interstitial fluid. The objective of this study was to compare debris flow deposits and parent materials from two neighbouring catchments of the Swiss Alps, with special emphasis on the colloidal constituents. The catchments are small in area (4 km2), 2·5 km long, similar in morphology, but different in geology. The average slopes are 35–40%. The catchments were monitored for debris flow events and mapped for surface aspect and erosion activity. Debris flow deposits and parent materials were sampled, the clay and silt fractions extracted and the bulk density, <2 mm fraction bulk density, particle size distribution, chemical composition, cation exchange capacity (CEC) and mineralogy analysed. The results show that the deposits are similar to the parent screes in terms of chemical composition, but differ in terms of: (i) particle size distribution; and (ii) mineralogy, reactivity and density of the <2 mm fraction. In this fraction, compared with the parent materials the deposits show dense materials enriched in coarse monocrystalline particles, of which the smallest and more reactive particles were leached. The results suggest that deposit samples should not be considered as representative of source or flow materials, particularly with respect to their physical properties.  相似文献   

19.
Varve-like parallel laminated and homogeneous muds on natural levees of submarine channels result from the spill-over of the dilute upper parts of channelized turbidity currents. On the levees of the Northwest Atlantic Mid-Ocean Channel, Labrador Sea, laminated turbidite muds show a systematic upward thickness variation of the granular silt laminae and the clay laminae. In many depositional units the former decrease logarithmically upwards in thickness while the latter increase logarithmically. The origin of parallel lamination in current-deposited, fine-grained sediments is interpreted in terms of the ‘burst-and-sweep model’ for the viscous sublayer of turbulent flows. Individual silt laminae of laminated turbidite muds form due to shear sorting during burst-and-sweep events which have a winnowing effect on the clay fraction. In contrast to sand-transporting flows the viscous sublayer of silt- and clay-carrying dilute turbidity currents cannot be permanently in a turbulent state. The presence of clay laminae suggests that the boundary layer relaminarizes periodically. It is speculated that this is caused by pressure waves with negative pressure gradients favouring the suppression of bursts and sweeps. The observed vertical thickness variations suggest that the periods of laminar boundary-layer flow increase in duration as turbulence of the main current decays. The upward thickness decrease of the silt laminae is explained in terms of decreasing supply rates to the boundary layer from the main flow. A multiple bursting-cycle mechanism is favored over a single bursting cycle mechanism for the formation of individual silt laminae by shear sorting.  相似文献   

20.
黏土颗粒含量对蒋家沟泥石流启动影响分析   总被引:4,自引:0,他引:4  
黏土颗粒在泥石流中的含量并不大,但却显著地影响着泥石流的启动。在室内通过筛分配成9种不同黏粒含量级配的土体,在自行设计的模型槽内以1.64 g/cm3(松散干密度),1.79、1.94 g/cm3(天然干密度)3种干密度堆成边坡模型,在雨强为85 mm/h下进行人工降雨试验,初步探讨了黏土颗粒含量对泥石流启动的影响,得到:黏粒含量在5%~18%时可以形成泥石流,其中黏粒含量10%时所需时间最短,低于5%或大于18%难以形成泥石流,黏粒含量具有临界性;填筑干密度越大,泥石流启动越困难,表现在启动时间长、深度浅、规模小、且填筑干密度不改变黏粒含量临界性;降雨条件下土体入渗率越高,泥石流越容易启动产流。通过试验的研究,可以深入揭示泥石流形成的内在机制,黏粒含量临界性为泥石流预测、预报提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号