首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   

2.
TitanWRF general circulation model simulations performed without sub-grid-scale horizontal diffusion of momentum produce roughly the observed amount of superrotation in Titan’s stratosphere. We compare these results to Cassini-Huygens measurements of Titan’s winds and temperatures, and predict temperature and winds at future seasons. We use angular momentum and transformed Eulerian mean diagnostics to show that equatorial superrotation is generated during episodic angular momentum ‘transfer events’ during model spin-up, and maintained by similar (yet shorter) events once the model has reached steady state. We then use wave and barotropic instability analysis to suggest that these transfer events are produced by barotropic waves, generated at low latitudes then propagating poleward through a critical layer, thus accelerating low latitudes while decelerating the mid-to-high latitude jet in the late fall through early spring hemisphere. Finally, we identify the dominant waves responsible for the transfers of angular momentum close to northern winter solstice during spin-up and at steady state. Problems with our simulations include peak latitudinal temperature gradients and zonal winds occurring ∼60 km lower than observed by Cassini CIRS, and no reduction in zonal wind speed around 80 km, as was observed by Huygens. While the latter may have been due to transient effects (e.g. gravity waves), the former suggests that our low (∼420 km) model top is adversely affecting the circulation near the jet peak, and/or that we require active haze transport in order to correctly model heating rates and thus the circulation. Future work will include running the model with a higher top, and including advection of a haze particle size distribution.  相似文献   

3.
The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1° by 1° in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a ‘sponge layer’ to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus’ cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus’ atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics.  相似文献   

4.
Roša  D.  Vršnak  B.  Božić  H.  Brajša  R.  Ruždjak  V.  Schroll  A.  Wöhl  H. 《Solar physics》1998,179(2):237-252
The dependence of the measured apparent synodic solar rotation rate on the height of the chosen tracer is studied. A significant error occurs if the rotation rate is determined by tracing the apparent position of an object above the photospheric level projected on the solar disc. The centre-to-limb variation of this error can be used to determine simultaneously the height of the object and the true synodic rotation rate. The apparent (projected) heliographic coordinates are presented as a function of the height of the traced object and the coordinates of its footpoint. The relations obtained provide an explicit expression for the apparent rotation rate as a function of the observed heliographic coordinates of the tracer, enabling an analytic least-squares fit expression to determine simultaneously the real synodic rotation rate and the height of the tracer.  相似文献   

5.
In this paper we compute the rate of solar EUV heating in the upper atmosphere by photo-dissociation and photo-ionization, taking care to include properly the effects of oblique incidence of solar flux, sphericity of the atmosphere and ellipticity of the Earth's orbit. The time and latitudinal variations of the computed heat function are revealed by numerical Fourier analysis of the heat function into harmonics of the yearly cycle. It is shown that EUV absorption contains a ‘latitude independent’ semi-annual component of heating with the ‘proper phase’ to account for the semi-annual density variations. Further, the annual component of the heat function predicts the existence of ‘summer polar’ density increases in the northern and southern hemispheres.  相似文献   

6.
Xun Zhu  Darrell F. Strobel 《Icarus》2005,176(2):331-350
Titan's atmospheric winds, like those on Venus, exhibit superrotation at high altitudes. Titan general circulation models have yielded conflicting results on whether prograde winds in excess of 100 m s−1 at the 1 mbar level are possible based on known physical processes that drive wind systems. A comprehensive two-dimensional (2D) model for Titan's stratosphere was constructed to systematically explore the physical mechanisms that produce and maintain stratospheric wind systems. To ensure conservation of angular momentum in the limit of no net exchange of atmospheric angular momentum with the solid satellite and no external sources and sinks, the zonal momentum equation was solved in flux form for total angular momentum. The relationships among thermal wind balance, meridional circulation, and zonal wind were examined with numerical experiments over a range of values for fundamental input parameters, including planetary rotation rate, radius, internal friction due to wave stresses, and net radiative drive. The magnitude of mid-latitude jets is most sensitive to a single parameter, the planetary rotation rate and results from the conversion of planetary angular momentum to relative angular momentum by the meridional circulation, whereas the strength of meridional circulation is mainly determined by the magnitude of the radiative drive. For Titan's slowly rotating atmosphere, the meridional temperature gradient is vanishingly small, even when the radiative drive is enhanced beyond reasonable magnitudes, and can be inferred from zonal winds in gradient/thermal wind balance. In our 2D model large equatorial superrotation in Titan's stratosphere can be only produced through internal drag forcing by eddy momentum fluxes, which redistribute angular momentum within the atmosphere, while still conserving the total angular momentum of the atmosphere with time. We cannot identify any waves, such as gravitational or thermal tides, that are sufficiently capable of generating the required eddy forcing of >50 m s−1 Titan-day−1 to maintain peak prograde winds in excess of 100 m s−1 at the 1 mbar level.  相似文献   

7.
Axel D. Wittmann 《Solar physics》1996,167(1-2):441-444
Using the AT1 CCD camera at the Echelle spectrograph of the GCT at Tenerife, solar Doppler rotation measurements in the photospheric lines Fe I 6301.5 Å and 6302.5 Å and in the chromospheric line Na-D2 5890.0 Å have been made. The line shifts measured at different heliographic latitudes around the limb were corrected for observer motion and converted into sidereal rotation rates. At the equator the observed chromospheric rotation rate is about 8 % larger than the photospheric rate, and the average observed Doppler rotation rate is not very much different from the mean rotation rates deduced from all published tracer works and all published Doppler works. Near the poles (where tracer methods rely on extrapolation) both the chromospheric and the photospheric rotation rate are slightly smaller than the all Doppler rate and are considerably smaller than the extrapolated all tracer rate. If all previous measurements of solar rotation are taken into account, a surface rotation law with lower error bounds than previously possible can be derived.  相似文献   

8.
In 1970 the IAU defined any object'snorth pole to be that axis of rotation which lies north of the solar system's invariable plane. A competing definition in widespread use at some institutions followed the right hand rule whereby the north axis of rotation was generally said to be that that of the rotational angular momentum. In the case of the latter definition, the planet Neptune and its satellite Triton would have their north poles in opposite hemispheres because Triton's angular momentum vector is in the hemisphere opposite from that of Neptune's rotation angular momentum.The IAU resolutions have been somewhat controversial in some quarters ever since their adoption. A Working Group has periodically updated the recommended values of planet and satellite poles and rotation rates in accordance with the IAU definition of north and the IAU definition of prime meridian. Neither system is completely satisfactory in the perception of all scientists, and some confusion has been generated by publishing data in the two different systems.In this paper we review the IAU definitions ofnorth and of the location ofprime meridian and we present the algorithm which has been employed in determining the rotational parameters of the natural satellites. The IAU definition of the prime meridian contains some ambiguities which in practice have been specified by the numerical values published by the IAU working group but which have not yet been explicitly documented. The purpose of this paper is to explicitly document the algorithm employed by the IAU working group in specifying satellite poles and rotation rates.  相似文献   

9.
The rotation of a compressible inviscid fluid disc of (1) slowly varying density or (2) nonuniform density (cold gas approximation) or (3) nonuniform density (hot, but tenuous) is considered. Perturbation methods for solving the basic equation for conservation of vorticity are used. It is found that steady state conditions are realized when vortex waves and differential rotation (jet streams) coexist; special solutions for these vortex waves are obtained. For one of these solutions, a given jet stream and its associated vortex (only one vortex per jet allowed) wave can exist only at certain discrete orbital distances, given by a geometric progressionA n wheren is an integer andA is a constant. This progression is a good representation for the distances of planets and satellites, with small orbital inclinations, from their respective parent bodies. Certain other solutions for the vortex wave yield streamlines that are logarithmic spirals. Some justifications are given for applying the model to the dynamics of hurricanes and spiral galaxies. Comparisons with observations are surprisingly favorable.The possible role of the jet streams and the steady state long vortex waves (a cooperative-vortex phenomenon) in the formation and evolution of the solar system is also discussed. Comparisons are made with the von Weizsäcker (1944 and Chandrasekhar, 1946) model of turbulent eddies in the solar nebula and with the particle (asteroidal) jet streams of Alfvén and Arrhenius (1970a, b).  相似文献   

10.
Here we present the first quantitative study of the gas to solid particle conversion in a Radio Frequency dusty plasma experiment simulating the complex atmospheric reactivity on Titan.Analogs of Titan’s aerosols have been produced in different N2-CH4 gas mixtures. Using in situ mass spectrometry, it has been found that, by varying the initial methane concentration, aerosols could be produced in methane steady state concentrations similar to Titan’s atmospheric conditions. In our experiment, an initial ∼5% methane concentration is necessary to ensure a ∼1.5% methane steady state concentration in the plasma.The tholin mass production rate has been quantified as a function of the initial methane concentration. A maximum was found for a steady state CH4 concentration in agreement with Titan’s atmospheric CH4 concentrations. At this maximum, the tholin C/N ratio is about 1.45 and the carbon gas to solid conversion yield is about 35%.We have modeled the mass production rate by a parabolic function, highlighting two competitive chemical regimes controlling the tholin production efficiency: an efficient growth process which is proportional to the methane consumption, and an inhibiting process which opposes the growth process and dominates it for initial methane concentrations higher than ∼5%. To explain these two opposite effects, we propose two mechanisms: one involving HCN patterns in the tholins for the growth process, and one involving the increasing amount of atomic hydrogen in the plasma as well as the increase in aliphatic contributions in the tholins for the inhibiting process. This study highlights new routes for understanding the chemical growth of the organic aerosols in Titan’s atmosphere.  相似文献   

11.
The interaction of rotation and turbulent convection is assumed to give rise to an inhomogeneous, but isotropic, latitude dependent turbulent energy transport, which is described by a convective conduction coefficient c which varies with latitude. Energy balance in the convective zone is then possible only with a slow meridian circulation in the outer convective zone of the sun. The angular momentum transported by this circulation is balanced in a steady state by turbulent viscous transport down an angular velocity gradient. A detailed model is constructed allowing for the transition from convective transport to radiative transport at the boundaries of the convective zone, by using a perturbation analysis in which the latitude variation of c is small. The solution for a thin compressible shell gives equatorial acceleration and a hotter equator than pole, assuming that the convection is preferentially stabilised at the equator. For agreement with the sun's equatorial acceleration the model predicts an equatorial temperature excess of 70 K and a surface meridional velocity of 350 cm/sec from pole to equator.  相似文献   

12.
According to the conservation principle of angular momentum, we calculate in this paper the revolution period and the distance between the Earth and the Moon in the equilibrium state of the tidal evolution in the Earth-Moon system. The difference of energy between the current state and the equilibrium state is used to compute the time needed to fulfil the equilibrium state. Then the long-term variations of the Earth-Moon distance and of the Earth rotation rate are further estimated.  相似文献   

13.
The Hadley mechanism is adopted to describe the axisymmetric four day superrotation in the Venus atmosphere, with solar driven meridional winds redistributing energy and momentum, and eddy diffusion describing the actions of three dimensional transient eddies. We address the question how the eddy diffusion coefficients are related to the properties of the circulation. For the atmosphere of a slowly rotating planet such as Venus, we show that a form of the non-linear closure is suggested by the mixing length hypothesis, which constrains the magnitude of the eddy diffusion coefficients. Combining this constraint with the concept of the Rossby radius of deformation yields zonal velocities on the order of 100 m sec–1. A steady state, non-linear, one-layer spectral model is used for a parametric study to find a relationship between heat source, meridional circulation and eddy diffusion coefficients, which yields the large zonal velocities observed. This analysis leads to the following conclusions: (1) Proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. (2) The meridional velocity is virtually constant for large eddy diffusion coefficients. (3) Below a threshold in the diffusion rate, the meridional velocity decreases, commensurate with the mixing length hypothesis. Eddy heat conduction becomes important and shares with the Hadley cell advection in balancing the solar heating. The zonal velocities then reach large values near 100 m sec–1. (4) For large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates. However, under condition (3), the zonal velocities are independent of the planetary rotation rate. Ramifications are discussed for related parameterizations in GCMs, emphasizing that eddy diffusion coefficients are governed by solar forcing and cannot be chosen independently.  相似文献   

14.
An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium ‘peak’ at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of ‘ankles’ at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for ‘pulsar peaks’ has not yet proved successful.  相似文献   

15.
While steady thruster jets caused only modest surface erosion during previous spacecraft landings on the Moon and Mars, the pulsed jets from the Phoenix spacecraft led to extensive alteration of its landing site on the martian arctic, exposed a large fraction of the subsurface water ice under the lander, and led to the discovery of evidence for liquid saline water on Mars. Here we report the discovery of the ‘explosive erosion’ process that led to this extensive erosion. We show that the impingement of supersonic pulsed jets fluidizes porous soils and forms cyclic shock waves which propagate through the soil and produce erosion rates more than an order of magnitude larger than that of other jet-induced processes. The understanding of ‘explosive erosion’ allows the calculation of bulk physical properties of the soils altered by it, provides insight into a new behavior of granular flow at extreme conditions and explains the rapid alteration of the Phoenix landing site’s ground morphology at the northern arctic plains of Mars.  相似文献   

16.
Numerical treatment of a pertubation theory up to the third order yields quantitative estimates for an interesting polytropic solar model possessing differential rotation of Clement's type. A suitably defined reduction factor, otherwise referred to as strength, moderates the effects of the differential rotation and the so resulting limiting state represents efficiently uniform rotation of the model. The numerical results obtained are compared to respective ones derived from an original numerical implementation of a second-order perturbation theory.  相似文献   

17.
Nearly half of the total available accretion energy can be released in the boundary layer (BL) if the accreting object is slowly rotating. The spectral distribution of the emitted radiation depends crucially on the internal structure of the BL. Up to now no detailed models concerning the BL exist. We have developed an explicit two-dimensional numerical method written for axisymmetric accretion flows including viscosity effects and angular momentum. We display our first models concerning the BL structure incorporating variation of the stellar rotation and of the fraction of the released energy. The first results show a strong dependence of the BL structure on the local rate of cooling and on the rotation of the primary.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

18.
高懿  萧耐园 《天文学报》2007,48(4):456-462
根据角动量守恒原理,计算了地月系经潮汐演化到达平衡状态时的旋转周期和地月距离.并根据当前与平衡状态时地月系的总能量差,计算了到达平衡状态的时间.进而估计了地月距离变化和地球自转速率变化的长期趋势.  相似文献   

19.
Can gravitational effects damp Alfvén waves?   总被引:1,自引:0,他引:1  
Mckenzie  J.F.  Axford  W.I. 《Solar physics》2000,193(1-2):153-159
We show that Alfvén-gravity waves propagating in a gravitationally stratified atmosphere do not suffer damping as a result of the rate of working of the gravity drift current on the electric field of the waves. A self-consistent treatment involving conservation of total energy, Poynting's theorem, and the rate of working of the various drift currents on the electric field demonstrates that dissipation only arises from real dissipative processes such as Ohmic heating or viscous effects, otherwise the system is adiabatic.  相似文献   

20.
Using K-coronameter observations made by the High Altitude Observatory at Haleakala and Mauna Loa, Hawaii during 1964–1976, we determine the apparent recurrence period of white-light solar coronal features as a function of latitude, height, and time. A technique based on maximum entropy spectral analysis is used to produce rotational period estimates from daily K-coronal brightness observations at 1.125R S and 1.5R S from disk center and at angular intervals of 5° around the Sun's limb. Our analysis reaffirms the existence of differential rotation in the corona and describes both its average behavior and its large year-to-year variations. On the average, there is less differential rotation at the greater height. After 1966–1967 we observe a general increase in coronal rotation rate which may relate to similar behavior reported for the equatorial photospheric Doppler rate. However, the coronal rate increase is significantly greater than the photospheric. If K-coronal features reflect the rotation at depth in the Sun, the long-term rate increase and the variable differential rotation may be evidence for dynamically important exchanges of energy and momentum in the upper convection zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号