首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of fluctuations in both the interstellar electron number density and galactic magnetic field on the propagation of high frequency radio waves is discussed in terms of the frequency dependent Faraday rotation. It is shown that when the fluctuations are representative of large scale disturbances (1–102 pc) in the interstellar medium, then the observed Faraday rotation is not a measure of the line of sight integral of the product of the magnetic field with the electron number density.Since evidence has been presented elsewhere for believing that such large scale disturbances do exist in our galaxy, some care must be exercised in the physical interpretation of Faraday rotation measurements.Alfred P. Sloan Foundation Fellow.  相似文献   

2.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R⊙, the major axis scattering angle is ∼ 0.7" atλ= 6 cm and it varies with heliocentric distance asR -1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized toλ = 20 cm, has a value 20 ± 7 at 5R⊙and varies with heliocentric distance asR -3. Comparison with earlier resu lts suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scale sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are l k m at 2R⊙ and 4 km at 13R⊙. These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

3.
The search for non thermal radio emission from clusters of galaxies is a powerful tool to investigate the existence of magnetic fields on such large scale. Unfortunately, such observations are scarce thus far, mainly because of the very faint large scale radio emission expected in clusters of galaxies. In the present contribution we will first review the status of the radio observations of clusters of galaxies, carried out with the aim of detecting large scale radio emission.We will then focus on the large scale radio emission detected at 327 MHz and 610 MHz in the Coma cluster of galaxies. The features of the detected radio emission suggest that a magnetic field with an intensity of the order of ~ 10–7 Gauss must be present on a scale of about 2 Mpc (forH o = 100km s –1 Mpc –1). The morphology of the radio emission is similar to that of the most recent X-ray images derived with ROSAT, and follows the distribution of the galaxies in the cluster. All these pieces of information will be taken into account in the discussion on the possible origin of this large scale magnetic field.  相似文献   

4.
We perform and present a wavelet analysis on all 31 Cassini electron density profiles published to date (Nagy, A.F. et al. [2006]. J. Geophys. Res. 111 (A6), CiteID A06310; Kliore, A.J. et al. [2009]. J. Geophys. Res. 114 (A4), CiteID A04315). We detect several discrete scales of variability present in the observations. Small-scale variability (S < 700 km) is observed in almost all data sets at different latitudes, both at dawn and dusk conditions. The most typical scale of variability is 300 km with scales between 200 km and 450 km being commonly present in the vast majority of the profiles. A low latitude dawn/dusk asymmetry is noted in the prevalent scales with the spectrum peaking sharply at the 300 km scale at dusk conditions and being broader at dawn conditions. Compared to dawn conditions the dusk ionosphere also shows more significant variability at the 100 km scale. The 300 km vertical scale is also present in the few available profiles from the northern hemisphere. Early observations from 2005 show a dominant scale at 350 km whereas later in 2007–2008 the spectrum shifts to the shorter scales with the most prominent scale being 300 km. The performed wavelet analysis and the obtained results are independent of assumptions about the nature of the layers and do not require a definition for a “background” electron density profile.In the second part of the paper we present a gravity wave propagation/dissipation model for Saturn’s upper atmosphere and compare the wave properties to the characteristics of the observed electron density variability at different scales. The general features observed in the data are consistent with gravity waves being present in the lower ionosphere and causing layering of the ions and the electrons. The wave-driving mechanism provides a simultaneous explanation for several of the properties of the observed variability: (i) lack of variability in the electron density above the predicted region of wave dissipation; (ii) in most cases the peak amplitude of variability occurs within the altitude range for dissipation of gravity waves or below; (iii) shorter scales have smaller amplitudes than the longer scales; (iv) shorter scales are present at lower altitudes whereas longer scales persist to higher altitudes; and (v) several layers often form a system of equally spaced maxima and minima that can be traced over a large altitude range.  相似文献   

5.
《Planetary and Space Science》2006,54(9-10):988-998
The Cassini radio and plasma wave science (RPWS) instrument is sensitive to few-micron dust grains impacting on the spacecraft at relative speeds of order 10 km/s. Through the first year or so of operations in orbit at Saturn, the RPWS has made a number of both inclined and equatorial crossings of the E ring, particularly near the orbit of Enceladus. Assuming water ice grains, the typical size particle detected by the RPWS has a radius of a few microns. Peak impact rates of about 50 s−1 are found near the orbit of Enceladus corresponding to densities of order 5×10−4 m−3. The variation of dust fluxes as a function of height above or below the equator is well described by a Gaussian distribution with a scale height of about 2800 km although there is usually some non-Gaussian variation near the peak fluxes suggesting some structure in the core of the ring. Offsets of the peak number densities are typically of the order of a few hundred km from the geometric equator. A near-equatorial radial profile through the orbit of Enceladus shows a sharply peaked distribution at the orbit of the moon. A size distribution averaged over several passes through the orbit of Enceladus is determined which varies as m−2.80. The peak in dust number density at the orbit of Enceladus is consistent with previous optical measurements and strongly supports the suggestion that Enceladus is a primary source for E ring particles.  相似文献   

6.
A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large-scale density fluctuations that are able to efficiently diffuse small-k beam-unstable Langmuir waves in phase space, and, second, on the presence of a significant isotropic non-thermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements. The calculations indicate that, for realistic parameters, the most unstable, small k modes are fully stabilized while some oblique mode with higher k and lower growth rate might remain unstable; thus a very broad range of levels of Langmuir waves is possible from levels of the order of enhanced spontaneous emission to the threshold level for nonlinear processes. On the other hand, from in situ measurements of the density fluctuations spectrum by ISEE-1 and 2 in the vicinity of the Earth, it is shown that measured 100 km scale fluctuations may be too effective in quenching the instability. If such strong density fluctuations are common in the solar wind, we show they must be highly anisotropic in order to allow the build-up of Langmuir waves to the observed mV m–1 range. Moreover, the anisotropy must be such that the strongest variations of density occur in a plane perpendicular to the magnetic field.  相似文献   

7.
By measuring the decaying shape of the scatter-broadened pulse from the bright distant pulsar PSR J1644−4559, we probe waves scattered at relatively high angles by very small spatial scales in the interstellar plasma, which allows us to test for a wavenumber cutoff in the plasma density spectrum. Under the hypothesis that the density spectrum is due to plasma turbulence, we can thus investigate the (inner) scale at which the turbulence is dissipated. We report observations carried out with the Parkes radio telescope at 660 MHz from which we find strong evidence for an inner scale in the range 70–100 km, assuming an isotropic Kolmogorov spectrum. By identifying the inner scale with the ion inertial scale, we can also estimate the mean electron density of the scattering region to be 5–10 cm−3. This is comparable with the electron density of H  ii region G339.1−0.4, which lies in front of the pulsar, and so confirms that this region dominates the scattering. We conclude that the plasma inside the region is characterized by fully developed turbulence with an outer scale in the range 1–20 pc and an inner scale of 70–100 km. The shape of the rising edge of the pulse constrains the distribution of the strongly scattering plasma to be spread over about 20 per cent of the 4.6 kpc path from the pulsar, but with similarly high electron densities in two or more thin layers, their thicknesses can only be 10–20 pc.  相似文献   

8.
Microwave maps of solar active region NOAA 8365 are used to derive the coronal magnetograms of this region. The technique is based on the fact that the circular polarization of a radio source is modified when microwaves pass through the coronal magnetic field transverse to the line of sight. The observations were taken with the Siberian Solar Radio Telescope (SSRT) on October 21 – 23 and with the Nobeyama Radio Heliograph (NoRH) on October 22 – 24, 1998. The known theory of wave mode coupling in quasi-transverse (QT) region is employed to evaluate the coronal magnetograms in the range of 10 – 30 G at the wavelength 5.2 cm and 50 – 110 G at 1.76 cm, taking the product of electron density and the scale of coronal field divergence to be constant of 1018 cm–2. The height of the QT-region is estimated from the force-free field extrapolations as 6.2 × 109 cm for the 20 G and 2.3 × 109 cm for 85 G levels. We find that on large spatial scale, the coronal magnetograms derived from the radio observations show similarity with the magnetic fields extrapolated from the photosphere.  相似文献   

9.
Lee  Jeongwoo  White  Stephen M.  Kundu  M. R.  Mikić  Zoran  McClymont  A. N. 《Solar physics》1998,180(1-2):193-211
It is well recognized that the phenomenon of depolarization (the conversion of polarized radio emission into unpolarized emission) of microwaves over solar active regions can be used to infer the coronal electron density once the coronal magnetic field is known. In this paper we explore this technique using an active region for which we have excellent radio data showing depolarization at two frequencies, and for which we have an excellent magnetic field model which has been tested against observations. We show that this technique for obtaining coronal densities is very sensitive to a number of factors. When Cohen's (1960) theory where depolarization is due to magnetic field rotation alone is used, the result is particularly sensitive to the location of the surface on which the magnetic field is orthogonal to the line of sight. Depending on whether we take into account the presence of electric currents in the photosphere or not, their extrapolation into the corona can result in very different heights being deduced for the location of the depolarization strip, and this changes the density which is then deduced from the depolarization condition. Such extreme sensitivity to the magnetic field model requires that field extrapolations be able to accurately predict the polarity of magnetic fields up to coronal heights as high as 105 km in order to exploit depolarization as a density diagnostic.  相似文献   

10.
We introduce on/off intermittency into a mean field dynamo model by imposing stochastic fluctuations in either the alpha effect or through the inclusion of a fluctuating electromotive force. Sufficiently strong small scale fluctuations with time scales of the order of 0.3–3 years can produce long term variations in the system on time scales of the order of hundreds of years. However, global suppression of magnetic activity in both hemispheres at once was not observed. The variation of the magnetic field does not resemble that of the sunspot number, but is more reminiscent of the 10Be record. The interpretation of our results focuses attention on the connection between the level of magnetic activity and the sunspot number, an issue that must be elucidated if long term solar effects are to be well understood. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

12.
The analysis of observations of the eclipse on August 1, 2008, at wavelengths of 10.5 and 12 cm demonstrated that, in the epoch of deep minimum between the 23rd and 24th cycles of solar activity, the radio radius of the solar disk in the equatorial direction was 120 × 103 km larger than the radio radius in the polar direction. In this case, the brightness temperature of the polar region turned out to be of the order of (35–37) × 103 K and corresponded to the radiation emission from upper layers of the chromosphere from an altitude of about 11 × 103 km. At the heliolatitude <25° beyond the visible disk at a distance of about 70 × 103 km from the photosphere an increased radio brightness of up to 100 × 103 K was observed, which testifies to the increased electron density in the equatorial zone of the corona at the complete absence of groups of spots on the solar disk.  相似文献   

13.
The simple form of Ohm's law (SI units)J = (E+ v × B)is valid for high density magnetofluids (where the mean free path for collisions is less than the Larmor radius) but is not strictly valid for the tenuous solar corona. We examine the nonlinear evolution of a magnetic disturbance using a more general form of Ohm's law which includes the Hall term. The Hall term dominates MHD development in the corona when the product of the magnetic scale length and the square root of the density is small enough; in particular when (1) the electron density is less than about 1013 m-3 and (2) the scale length is less than a few hundred meters. For these parameters, a magnetic disturbance may carry electrons at a drift speed in excess of the Alfvén speed. We believe this nonlinear phenomenon may be important for the impulsive acceleration of charged particles in the solar corona.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
The slowly varying component of the solar radio emission (S-component) has been investigated from data obtained in the United States and Japan at 35, 17, 9.4 and 4 GHz. A good correlation occurs between the 35 GHz flux of the S-component and the corresponding plage area. This is interpreted by the assumption that the 35 GHz radiation is due to pure free-free emission, and the electron density in the coronal condensation is estimated to be about 2 × 109/cm3, assuming the electron temperature to be 2 × 106 K and the scale height of the coronal condensation to be 3 × 104 km.The S-component radiation at 17 GHz has, in turn, two components, one is due to pure free-free emission and the other is due to thermal-gyro emission. It is concluded that in the active regions a magnetic field of more than 2000 gauss extends horizontally over about 104 km.  相似文献   

15.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R , the major axis scattering angle is 0.7 at =6 cm and it varies with heliocentric distance asR –1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized to =20 cm, has a value 20±7 at 5R and varies with heliocentric distance asR –3. Comprison with earlier results suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scales sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are 1 km at 2R and 4 km at 13R . These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

16.
This paper deals with a detailed analysis of spectral and imaging observations of the November 5, 1998 (Hα 1B, GOES M1.5) flare obtained over a large spectral range, i.e., from hard X-rays to radiometric wavelengths. These observations allowed us to probe electron acceleration and transport over a large range of altitudes that is to say within small-scale (a few 103 km) and large-scale (a few 105 km) magnetic structures. The observations combined with potential and linear force-free magnetic field extrapolations allow us to show that: (i) Flare energy release and electron acceleration are basically driven by loop–loop interactions at two independent, low lying, null points of the active region magnetic field; (ii) <300 keV hard X-ray-producing electrons are accelerated by a different process (probably DC field acceleration) than relativistic electrons that radiate the microwave emission; and (iii) although there is evidence that hard X-ray and decimetric/metric radio-emitting electrons are produced by the same accelerator, the present observations and analysis did not allow us to find a clear and direct magnetic connection between the hard X-ray emitting region and the radio-emitting sources in the middle corona.  相似文献   

17.
The development of three intense active centers during their appearance on the solar disk is examined using high resolution observations at 2.8 cm. Each region shows a very bright component with brightness temperature > 106 K and size smaller than 20.The development of the bright components have been investigated on different time scales. Intensity fluctuations on a time scale of minutes are within the instrumental accuracy while the evolution over periods of days shows a variation of the flux density up to 30–40% per day.The problem of the bright cores height is discussed. Heights within 10 × 103 and 40 × 103 km are found using their apparent displacement on the disk.  相似文献   

18.
We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.NAS/NRC Postdoctoral Research Associate on leave from Laboratory Associated with CNRS No. 264, Paris Observatory, France.  相似文献   

19.
We have made VLA radio total intensity and polarisation observations in the A, B and C configurations at 1665, 1435, 1365 and 1295 MHz and in the B, C and D configurations at 8465 and 8415 MHz to study the environment of the powerful radio galaxy Hercules A. We have also made ROSAT PSPC and HRI X-ray observations to study the intracluster gas in the Hercules A cluster. We have mapped the Faraday rotation field with high resolution (1.′′42.5 h−1100 kpc for q0=0), and combined this with the X-ray data on the gas distribution in order to map the magnetic field of the cluster. We have found that Hercules A exhibits a strong Laing-Garrington effect: the western side of the radio emission is more depolarised than the eastern side. The X-ray observations have revealed an extended X-ray emission elongated along the radio galaxy axis and a weak nuclear component. The Hercules A cluster is a cooling flow cluster, which appears isothermal at large radii. Comparing the Faraday dispersion profile with the X-ray estimated density profile, we found that the magnetic field is decreasing with radius and we have estimated a central value of 3B0 (μG) 9. The estimated core electron density of n06.6×103 m−3 reveals a dense environment in which Hercules A is situated.  相似文献   

20.
Electron densities throughout the D- and E-regions of the ionosphere have been measured during two rocket flights from Woomera, Australia; one in the daytime and one at night. The detailed distributions have a height resolution of much better than a km over the majority of the height range which was 66–175 km on the day flight and 83–184 km at night. This resolution has enabled sharp changes in electron density to be observed such as those associated with positive ion changes near 85 km (Reid 1970) and with sporadic-E layers.The detail and large dynamic range in electron density (102 to 3 × 105 cm?3) were achieved by combining the data from an LF radio propagation experiment with those from a probe experiment. The radio equipment allowed measurement of both the phase and amplitude of the wavefield above a ground transmitter. The method of deducing electron density from the phase velocity of the penetrating component of the wavefield is explained in detail. A comparison of the probe current and electron density has shown that the ratio between them varies slowly with height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号