首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of simulation of terrestrial water balance components are analyzed. The simulation involved six alternative datasets on precipitation and four land surface models SWAP, NSIP, NOAH, and SSiB. The calculations have been carried out for the entire land surface (except for the Antarctic Continent) with one-degree step in the space grid and three-hour time step over 1982–1995. The extent of the influence of uncertainties in the specification of precipitation and the choice of the model on simulated water balance characteristics is revealed.  相似文献   

2.
The potentialities of a method for evaluating runoff from Northern Dvina basin, which is based on a model of heat and water exchange between land surface and the atmosphere (SWAP) in combination with input data based on global databases on land surface parameters and different variants of meteorological data (derived from reanalysis data; reanalysis data hybridized with ground based and satellite observations; observational data of meteorological stations situated in the river basin). In all three cases, an optimization was applied to some key model parameters, including the characteristics of the land surface and correction factors for precipitation and incoming radiation.  相似文献   

3.
4.
The applicability of a procedure, developed previously for evaluating runoff hydrographs of northern rivers, to the largest Russian river—the Lena—which flows under severe conditions of the Northeastern Siberia, is examined. The procedure is based on the land surface model SWAP in combination with input data derived from global databases of land surface parameters and meteorological forcing data derived from observations at meteorological stations located in the basins of the rivers or near them. Also studied was the ability of the model SWAP to reproduce the many-year dynamics of the values of snow water equivalent averaged over the Lena basin and their distribution over the basin area.  相似文献   

5.
All previous versions of a physically based land-surface model SWAP have assumed for simplicity that vegetation is fully covered by snow during the cold season. Such assumption is reasonable only for the regions dominated by short vegetation or for warm climates where snow processes are absent. The major goals of this paper are (i) modification of the latest version of SWAP by incorporation of tall vegetation into the cold-season parameterizations to make the model applicable for simulating heat and water transfer within a boreal forest biome and (ii) validation of the modified version using the data from a forested catchment located in the boreal zone. Modification of SWAP required to parameterize radiative and turbulent exchange between the forest crown and forest floor, partitioning snowfall between interception by the canopy (in doing so, snow interception differs from rain interception) and falling to the ground, formation of snow cover on the forest crown and forest floor including snow accumulation (both in solid and liquid fractions), snow evaporation, and snowmelt. The advanced model was validated using a set of hydrometeorological data measured during 18 years (1966–1983) at the Tayozhniy catchment (covered by boreal spruce forest), Valdai, Russia. Simulations of annual and monthly snow/rain interception, daily runoff at the catchment outlet, snow density, snow depth, snow water equivalent, soil water storage in three layers (0–20, 0–50 and 0–100 cm), and monthly evapotranspiration from the catchment were compared with observations. Analysis of the results of validation shows that the new version of the model SWAP reproduces the heat and water exchange processes occurring in mid-latitude boreal forest quite reasonable.  相似文献   

6.
The potentialities of a technique for simulating the runoff from the Olenek and Indigirka river basins located in the Republic of Sakha (Yakutia) under the most severe climate conditions are investigated. The technique is based on a land surface model SWAP in combination with input data based on global data sets on land surface parameters and meteorological forcing data derived from observations from meteorological stations situated within or near the river basins. To improve the calculation quality, an optimization procedure was applied to the key model parameters, including both land surface characteristics and (for the Olenek R.) the correction factors for precipitation and incoming radiation.  相似文献   

7.
The Noah model is a land surface model of the National Centers for Environmental Prediction. It has been widely used in regional coupled weather and climate models (i.e. Weather Research and Forecasting Model, Eta Mesoscale Model) and global coupled weather and climate models (i.e. National Centers for Environmental Prediction Global Forecast System, Climate Forecast System). Therefore, its continued improvement and development are keys to enhancing our weather and climate forecast ability and water and energy flux simulation accuracy. North American Land Data Assimilation System phase 1 (NLDAS‐1) experiments indicated that the Noah model exhibited substantial bias in latent heat flux, total runoff and land skin temperature during the warm season, and such bias can significantly affect coupled weather and climate models. This paper presents a study to improve the Noah model by adding model parameterization processes such as including seasonal factor on leaf area index and root distribution and selecting optimal model parameters. We compared simulated latent heat flux, mean annual runoff and land skin temperature from the Noah control and test versions with measured latent heat flux, land surface skin temperature, mean annual runoff and satellite‐retrieved land surface skin temperature. The results show that the test version significantly reduces biases in latent heat, total runoff and land skin temperature simulation. The test version has been used for the NLDAS phase 2 (NLDAS‐2) to produce 30‐year water flux, energy flux and state variable products to support the US drought monitor of National Integrated Drought Information System. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Gusev  E. M.  Nasonova  O. N. 《Water Resources》2004,31(2):132-147
The current state of the art in the investigation and modeling of soil–vegetation/snow cover–surface air layer system (SVAS) is briefly reviewed. This system plays a decisive role in the formation of heat and moisture exchange between the land surface and atmosphere. The SWAP model, developed by the authors of this paper, is used to illustrate the potentialities of SVAS models in reproducing the dynamics of components of water and heat balances of the land surface under different natural conditions and at different spatial and temporal scales. The challenges and perspectives of further development of SVAS models are analyzed.  相似文献   

9.
A method is developed for scenario prediction of changes in water balance components in northern river basins in the context of possible climate changes. The method uses the land surface model SWAP, describing the heat and mass exchange between the land surface and the atmosphere. Four IPCC climate scenarios, corresponding to specified scenarios of economic, technological, political, and demographic development of the human civilization, were used to forecast different variants of the dynamics of meteorological characteristics in the Northern Dvina River basin in the XXI century, which served as a basis for evaluating possible changes in precipitation, evaporation, and runoff from the Northern Dvina basin until the year of 2063.  相似文献   

10.
The potentialities of a procedure for calculating the Pechora River runoff from the pan-Arctic river basin are studied. The procedure is based on the use of a model describing heat and water exchange between the land surface and the atmosphere and two variants of input data sets relying on global databases on meteorological characteristics and land surface parameters and data of standard measurements of meteorological characteristics in combination with parameters of the land surface of the basin, taken from global databases. In both cases, use was made of the method for optimizing part of the most important model parameters, including both land surface parameters and correction factors for some meteorological elements.  相似文献   

11.
Nasonova  O. N.  Gusev  Ye. M.  Kovalev  E. E.  Ayzel  G. V.  Chebanova  M. K. 《Water Resources》2021,48(5):666-675
Water Resources - Changes in the water balance components of 11 large-scale river basins due to possible climate change during the 21st century were simulated with the land surface model SWAP and...  相似文献   

12.
Data on the rivers of Onega, Ponoi, and Tuloma have been used to study whether the land surface model SWAP can serve as a tool to reproduce many-year series of daily runoff hydrographs of rivers in Northern Russia. The input data for the model have been derived from observational data from weather stations and global databases. It has been considered whether the model parameters obtained for one river can be used for calculations for other rivers where no data on appropriate parameters are available.  相似文献   

13.
Rainfall runoff hydrographs for 12 river basins ∼103 km2 in area, simulated using land surface model SWAP, are compared with analogous hydrographs obtained using hydrological models that took part in the International Model Parameter Estimation Experiment project and demonstrated the best results. All models were calibrated against data on daily river runoff from each basin over a 20-year period (1960–1979). Optimized model parameters were used to simulate runoff hydrographs for the following 19 years (1980–1998). The comparison of the modeled hydrographs for 12 basins in different calculational periods demonstrated that the SWAP model can simulate river runoff with an accuracy comparable with that of hydrological models.  相似文献   

14.
The ability of a new version of SWAP physically based model, which describes the heat and water exchange processes in the soil-vegetation (snow cover)-near-surface atmosphere system and has been adapted to the permafrost conditions, to reproduce runoff formation at small watersheds in the permafrost zone. The procedure for the preparation of missing input data for model simulations is described. Model simulations were performed based on observational data collected within a decade (1969–1978) by the Kolyma Water Balance Station, located in a high-land continuous permafrost zone. The results of comparison of the modelled daily and annual runoff with data of appropriate measurements in a number of experimental watersheds in the basin of the Kontaktovyi Creek (Upper Kolyma) are analyzed.  相似文献   

15.
Forecasts of the dynamics of meteorological characteristics in the basins of the Olenek and Indigirka rivers (the Republic of Sakha) in the XXI century have been obtained for four IPCC global climate scenarios of SRES family, corresponding to specified scenarios of economic, technological, political, and demographic development of human civilization. The forecasts have been used to calculate scenarios of possible changes in water balance components for the basins under consideration up to the year of 2063. The calculation procedure involves a physically-based model of heat and mass exchange between the land surface and the atmosphere SWAP and climate scenario generator MAGICC/SCENGEN.  相似文献   

16.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present a genetic algorithm-based methodology to quantify agricultural and water management practices from remote sensing (RS) data in a mixed-pixel environment. First, we formulated a linear mixture model for low spatial resolution RS data where we considered three agricultural land uses as dominant inside the pixel—rainfed, irrigated with two, and three croppings a year; the mixing parameters we considered were the sowing dates, area fractions of agricultural land uses in the pixel, and their corresponding water management practices. Then, we carried out numerical experiments to evaluate the feasibility of the proposed approach. In the process, the mixing parameters were parameterized by data assimilation using evapotranspiration and leaf area index as conditioning criteria. The soil–water–atmosphere–plant system model SWAP was used to simulate the dynamics of these two biophysical variables in the pixel. The results of our numerical experiments showed that it is possible to derive some sub-pixel information from low spatial resolution data e.g. the existing agricultural and water management practices in a region, which are relevant for regional agricultural monitoring programs.  相似文献   

18.
Nasonova  O. N.  Gusev  Ye. M.  Kovalev  E. E.  Ayzel  G. V.  Panysheva  K. M. 《Water Resources》2019,46(1):S145-S154
Water Resources - Projected changes in river runoff due to possible climate change during the 21st century were simulated with making use of a physically-based land surface model SWAP and...  相似文献   

19.
Atmospheric stability conditions over the water surface can affect the evaporative and convective heat fluxes from the water surface. Atmospheric instability occurred 72.5% of the time and resulted in 44.7 and 89.2% increases in the average and maximum estimated evaporation, respectively, when compared to the neutral condition for a small shallow lake (Binaba) in Ghana. The proposed approach is based on the bulk-aerodynamic transfer method and the Monin-Obukhov similarity theory (MOST) using standard meteorological parameters measured over the surrounding land. For water surface temperature, a crucial parameter in heat flux estimation from water surfaces, an applicable method is proposed. This method was used to compute heat fluxes and compare them with observed heat fluxes. The heat flux model was validated using sensible heat fluxes measured with a 3-D sonic anemometer. The results show that an unstable atmospheric condition has a significant effect in enhancing evaporation alongside the sensible heat flux from water surfaces.  相似文献   

20.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号