首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
During France JGOFS campaign ANTARES 2 (R.V. Marion Dufresne), samples were taken along a section of the 62°E meridian from 49° to 66°S. The high temperature catalytic oxidation (HTCO) method was used to determine the concentration of dissolved organic carbon (DOC). The analyses were conducted both on-board ship and after the cruise in the laboratory. Collecting and storing acidified samples for post-cruise analysis induced no significant differences. The use of two separate but identical channels on the carbon analyzer increased the number of samples analysed per day and allowed independent monitoring of the instrument blank and the calibration of the detector response. The mixed layer concentrations of organic carbon varied from about 52 μM C in the Antarctic Divergence (64°S) to about 63 μM C in the Polar Frontal Zone (49°S). Vertical profiles showed a slight, but significant, decrease in organic carbon below the mixed layer, to about 42 μM C below 2000 m across the transect. The homogeneity and low concentration of organic carbon in deep water is consistent with values recently reported for the equatorial Atlantic and Pacific Ocean and supports the evidence for a constant deep water DOC concentration. In addition, this provides a verification of the instrument performance, thus validating observed DOC data trends and allowing a comparison with the ‘modern' DOC literature. In general, the organic carbon concentration in the mixed layer was lower than previously published data of the main ocean basins, which might -reflect the low chlorophyll a concentration (<0.5 μg/l) encountered in this region. Along the 62°E meridian section, organic carbon showed a trend with corresponding measurements of phytoplankton biomass and bacterial production, underlining the dependence of bacterial growth on a pool of ‘freshly' produced DOC. Organic carbon was found to exhibit a weak inverse trend versus apparent oxygen utilization (AOU). This suggests that only a small part of the oxygen consumption is due to the mineralisation of DOC.  相似文献   

2.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   

3.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

4.
Two independent voltammetric techniques, differential pulse cathodic stripping voltammetry (DPCSV) and differential pulse anodic stripping voltammetry (DPASV), determined that 95% of the dissolved zinc is organically complexed at two depths (60 and 150 m) within the surface euphotic zone at an open ocean station in the Northeast Pacific. Average values for the concentrations of the natural zinc-complexing organic ligands (CL) obtained from duplicate determinations at these two depths by DPCSV versus DPASV are in excellent agreement: 1.60 ± 0.01 versus 1.76 ± 0.03 nM at 60 m, and 2.14 (n=1) versus 2.22 ± 0.06 nM at 150 m. Average values for the conditional stability constants (with respect to free Zn2+) of the natural zinc-organic complexes (log KZnL) from duplicate determinations at both depths by DPCSV versus DPASV are 10.3 ± 0.2 versus 11.2 ± 0.2. Additional research is required to assess the significance of the difference in the conditional stability constants determined by these two techniques. These results confirm recent observations that strong zinc complexes formed with an organic ligand class existing at nanomolar concentrations dominates zinc speciation in the North Pacific.  相似文献   

5.
This study extends the 1991-1995 records of marine dissolved organic carbon (DOC) concentrations and Δ14C values at hydrographic Station M (34°50′N, 123°00′W) with new measurements from a frozen (-20 °C) archive of samples collected between April 1998 and October 2004. The magnitudes and synchronicity of major Δ14C anomalies throughout the time-series imply transport of DOC from the surface ocean to depths of at least 450 m on the timescale of months. Keeling plots of all measurements at Station M predict a continuum of possible background DOC compositions containing at least 21 μM of -1000‰ (i.e., ≥57,000 14C years) DOC, but are more consistent with mean deep DOC (38 μM, -549‰; i.e., 6,400 14C years). These results and coral records of surface dissolved inorganic carbon (DIC) Δ14C were used to estimate pre-bomb DOC Δ14C depth profiles. The combined results indicate that bomb-14C has penetrated the DOC pool to depths of ≥450 m, though the signal at that depth is obscured by short-term variability.  相似文献   

6.
Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment–water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA;P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (rs), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (rs=0·80, P<0·0001); high concentrations of RED Fe at the sediment–water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (rs=0·58;P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment–water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm–50μm) whereas sites not influenced by riverine input were primarily percent sand (grain size >50μm). Concentrations of organic matter declined from the mouth to the foreslope of the estuary. With the exception of RED Fe, temporal variation (May vs July) was insignificant (P>0·05, three-way ANOVA). Concentrations of RED Fe recovered from the surficial sediments were in general greater in the summer vs spring months, although spring and summer values were highly correlated (Pearson Product Moment Correlation Coefficient; PPCC; R=0·89;P<0·0001). As the bioavailability of metals is dependent on sediment geochemistry, availability throughout the intertidal region will also be spatially dependent. This heterogeneity needs to be taken into account in studies addressing the impact of metals on estuarine systems.  相似文献   

7.
This study addresses sources and diagenetic state of early-season dissolved organic matter (DOM) in the Northeast Water Polynya (NEWP) area northeast of Greenland from distributions of humic substance fluorescence (HSfl), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) in the water column inside and outside the NEWP area. The water masses of the polynya area had acquired their spring/summer temperature–salinity characteristics at the time of sampling, and also had individual, different DOM signatures. DOC concentrations were variable within and among water masses in the polynya area, indicating patchy local sources and sinks of DOC. PySW and polynya intermediate water (PyIW) had higher average DON concentrations and average lower C:N ratios than polynya bottom water (PyBW), indicating a larger fraction of fresh DOM in PySW and PyIW than in PyBW. Ice-covered, polynya area surface waters (PySW) had higher DOC concentrations (113±14 μM, n=68) than surface water (SW) outside the polynya area (96±18 μM, n=6). The DOM C:N ratios in a low-salinity, ice-melt subgroup of PySW samples indicate labile material, and these low-salinity surface waters appeared to have a local DOC and DON source. In contrast, HSfl was significantly lower inside than outside the NEWP area. Despite the lower HSfl values within the NEWP area, the PySW values were high when compared to open-ocean water. There were no local terrestrial sources for HSfl to the NEWP area and the East Greenland Current is therefore proposed as a likely source of allochtonous HSfl. When HSfl was used as a conservative tracer, up to 70% of the water in PySW and PyIW was found to be derived from SW, which contains a high fraction of water from the East Greenland Current. Similarly, a mixing model based on HSfl indicated that 80% of early-season DOC and 90–100% of early-season DON in PySW and PyIW were derived from SW, indicating a potentially high fraction of terrestrially-derived, relatively refractory DOM in the early-season NEWP area.  相似文献   

8.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

9.
Combination of estimated water transport and accurate measurements of total carbon dioxide (TCO2) on a hydrographic section at 58 °N allows the assessment of meridional inorganic carbon transport in the northern North Atlantic Ocean. The transport has been decomposed into contributions from the large-scale baroclinic overturning, the Ekman transport, baroclinic and a barotropic eddy terms, and an estimated contribution of the East Greenland Current. These terms are −0.27 · 106, +0.03 · 106, +0.03 · 106, +0.10 · 106, and +0.05 · 106 mol s−1, respectively, which result in a total southward inorganic carbon transport of only −0.06 · 106 mol s−1. An order of magnitude estimate of the meridional transport of dissolved organic carbon (DOC) has shown that in general this term cannot be ignored in the total carbon flux, this being +0.04 · 106 to +0.16 · 106 mol s−1 at 58 °N. A simple carbon budget has been formulated for the temperate North Atlantic, using our flux estimates as well as those of Brewer et al. (1989). This budget shows that the divergence of the meridional carbon flux, connected with the freshwater balance of the ocean may be of the same order of magnitude as the divergence of the total inorganic carbon flux. For an accurate estimate of the total carbon budget of the ocean it will be necessary to take both the DOC transport and the effects of the freshwater balance into account.  相似文献   

10.
Water samples were collected monthly for 3 years at 66°N, 2°E in the Norwegian Sea, 250 nautical miles off the Norwegian coast. Concentrations of mono- and polysaccharides were measured with the 2,4,6-tripyridyl-s-triazine (TPTZ) spectroscopic method. Total dissolved carbohydrates varied from 3.4 to 28.2 μM C of all samples and the ratio of carbohydrate to dissolved organic C (DOC) varied from an average of 14% at 0–25 m depth to 11% at 800–2000 m depth. This indicates that dissolved carbohydrates were a significant constituent of DOC in the Norwegian Sea. Polysaccharides varied from 0.4 to 21.5 μM C and monosaccharides from 0.7 to 11.7 μM C at all depths. The level of monosaccharides was relatively constant at 2.8–3.2 μM C below the euphotic zone, whereas polysaccharides showed more varying concentrations. Dissolved carbohydrates accumulated during the productive season, reaching maximum concentrations during summer although interannual differences were observed. A significant positive correlation between Chl a and soluble carbohydrate was found in one growing season with nutrient analyses. Average values for total carbohydrates were highest in the surface – 0 to 25 m – with 13.3 μM C and decreased to 8.4 μM C at 800–2000 m depth. The ratio of monosaccharides to polysaccharides exhibited a marked seasonal variation, increased from January to a maximum in June of 1.1, and declined to 0.5 in July.  相似文献   

11.
A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1–5 μmol of carbon and has an associated blank of 0.1–0.2 μmol of carbon.Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3.. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The δ13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC.The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average δ13C = −12.4.). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and δ13C of pore-water DOC was nearly 8. lighter at 1.5–2.0-cm depth than in the mat surface layer (0–0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and δ13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters, should be a useful probe of biogeochemical processes in recent environments.  相似文献   

12.
Hydrodynamic model application to Buzzards Bay is performed using a three-dimensional Boundary-fitted Hydrodynamic model in this study. The model is forced with observed tidal harmonic constants along the open boundaries and winds on the surface. The main focus of the present study is to model the detailed wind and tide-induced circulation in Buzzards Bay. The observed surface elevations and currents given in [Butman, B., Signell, R., Shoukimas, P., Beardsley, R.C., 1988. Current Observations in Buzzards Bay, 1982–1986. Open File Report 88-5. United States Geological Survey] and the tide and current harmonics given in [Signell, R.P., 1987. Tide- and Wind-forced Currents in Buzzards Bay, Massachusetts. Technical Report WH-87-15. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts] are used to validate the model predictions. The calibrated model is then used to study the relative contributions of tidal and wind forcing on the instantaneous and residual circulation in Buzzards Bay. The amplitudes and phases of the principal tidal constituents at 10 tidal stations in Buzzards Bay obtained from a harmonic analysis of a 60-day simulation compare well with the observed data. The predicted amplitude and phase of the M2 tidal constituent of surface elevations at these stations are, respectively, within 4 cm and 5° of the observed data. The errors in the model-predicted M2 harmonic principal current speeds are less than 6 cm/s, and the principal current directions and phases are within 14° of the observations. The observed surface elevations and currents given in [Butman, B., Signell, R., Shoukimas, P., Beardsley, R.C., 1988. Current Observations in Buzzards Bay, 1982–1986. Open File Report 88-5. United States Geological Survey] are used to validate the model-predicted low-frequency surface elevations and currents. The model predictions in low-frequency surface elevations at Woods Hole closely follow the trends seen in the observations with a correlation coefficient of 0.735, but fail to capture some of the peak surges seen in the observations. The model-predicted low-frequency currents in the east–west direction at stations in Buzzards Bay compare well with the observations with the correlation coefficient exceeding 0.811 and the model capturing the trends seen in the observations, for the most part. However, the model-predicted north–south velocities does not compare well with the observations. The model-predictions agree with the observations that the tidal currents in Vineyard Sound lagged the currents in Buzzards Bay by more than 3 h. The interaction of wind stress with large bathymetric gradients was shown to cause many vortices in Buzzards Bay, as seen from the model predictions. Model simulations show that the winds play a more dominant role than the tides in the generation of the barotropic residual currents in Buzzards Bay, while the model-predicted tide-induced residual current was seen to be small.  相似文献   

13.
Measurements of zinc and zinc complexation by natural organic ligands in the northeastern part of the Atlantic Ocean were made using cathodic stripping voltammetry with ligand competition. Total zinc concentrations ranged from 0.3 nM in surface waters to 2 nM at 2000 m for open-ocean waters, whilst nearer the English coast, zinc concentrations reached 1.5 nM in the upper water column. In open-ocean waters zinc speciation was dominated by complexation to a natural organic ligand with conditional stability constant (log KZnL′) ranging between 10.0 and 10.5 and with ligand concentrations ranging between 0.4 and 2.5 nM. The ligand was found to be uniformly distributed throughout the water column even though zinc concentrations increased with depth. Organic ligand concentrations measured in this study are similar to those published for the North Pacific. However the log KZnL′ values for the North Atlantic are almost and order of magnitude lower than those reported by Bruland [Bruland, K.W., 1989. Complexation of zinc by natural organic-ligands in the central North Pacific. Limnol. Oceanogr., 34, 269–285.] using anodic stripping voltammetry for the North Pacific. Free zinc ion concentrations were low in open-ocean waters (6–20 pM) but are not low enough to limit growth of a typical oceanic species of phytoplankton.  相似文献   

14.
To characterize more fully the nature of the fluorophores present in the dissolved organic matter found in seawater, steady state and time-resolved measurements of the luminescence quenching of a number of samples of marine dissolved organic matter with known quenchers, such as iodide, acrylamide and methyl viologen (MV) (1,1′-dimethyl-4,4′-bipyridinium), were compared. Quenching characteristics of these systems were analyzed using Stern-Volmer plots for both intensity and lifetime measurements. The bimolecular quenching constants, κq, for these quenchers were found to decrease in the order MV2+q 1010M−1s−1) > Iq 2 × 109 M−1 s−1) >CH2CHCONH2q 2 × 108 M−1 s−1) for the samples measured. The results also show that different samples are quenched to differing extents by the quenchers studied, that ionic strength alters the quenching constants, and that both static and diffusional quenching mechanisms may operate.Such studies are appropriate to the quantification of the reactivity of the singlet states of the chromophores found within marine dissolved organic matter. Although excess energy of the singlet state may be readily transferred to another chemical species, the combination of competing physical deactivation paths and the low concentrations of efficient quenches in the oceans serves to lessen the direct chemical impact of this process.  相似文献   

15.
16.
Marine aerosol samples collected from the North Pacific atmosphere were studied for molecular distributions of dicarboxylic acids by using a capillary gas chromatography and mass spectrometery. A homologous series of dicarboxylic acids (C2–C10) was detected in the marine aerosol samples as dibutyl esters. All the samples showed that the smallest diacid (oxalic acid: C2) was the most abundant and comprised 41–67% of the total diacids. The second most abundant species was malonic acid (C3) or succinic acid (C4). The diacids with more carbon numbers were generally less abundant. Total diacid concentration range was 17–1040 ng m–3, which accounted for up to 1.6% of total aerosol mass. This indicates that low molecular weight dicarboxylic acids are important class of organic compounds in the marine atmosphere. The concentrations were generally higher in the western North Pacific and lower in the central North Pacific. The major portion of diacids is probably derived from the Asian Continent and East Asian countries by long-range atmospheric transport and partly fromin situ photochemical production in the marine atmosphere.  相似文献   

17.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

18.
Phytoplankton cultures occurring in disphotic zone water were conducted to examine dissolved organic carbon (DOC) for possible controlling agent of the initial lag period and growth rate. Culture media of various concentrations of DOC were prepared by mixing low DOC disphotic zone water with high DOC surface water. Natural phytoplankton populations showed strong correlations in their lag period with DOC concentrations in the range from 0.75 mgC·I–1 to 1.2 mgC·I–1 in the water (r=–0.833,n=8) and in their population growth rate () (r=0.899,n=8). Similar tendencies were confirmed with a marine diatom (Skeletonema costatum) dominating in the present disphotic zone water by culture experiments. By reducing DOC concentrations in seawater samples by pretreatments of ultraviolet radiation, charcoal adsorption and Amberlite XAD-2 resin adsorption, lag periods ofS. costatum increased in every case, but their population growth rates were almost identical. These results obviously show that prolonged lag period at least occurs in low DOC water, which can explain the observations by Barber and Ryther (1969) that low photosynthetic carbon uptake rate occurs in newly upwelled low DOC water. It is found that the essential substance to shorten lag periods of phytoplankton cultured in disphotic zone water is a portion of dissolved organic matter, which is poor in disphotic zone water and rich in surface water, and the effect of the substance analogous to Na2EDTA strongly suggests that the substances are organic ligands.  相似文献   

19.
Dissolved and particulate samples were collected to study the distribution of thorium isotopes (234Th, 232Th and 230Th) in the water column of the Indian sector of the Southern Ocean (from 42°S to 47°S and from 60°E to 66°E, north of the Polar Front) during Austral summer 1999. Vertical profiles of excess 230Th (230Thxs) increases linearly with depth in surface water (0–100 m) and a model was applied to estimate a residence time relative to the thorium scavenging (τscav). Low τscav in the Polar Front Zone (PFZ) are found, compared to those estimated in the Subtropical Front Zone (STZ). Changes in particle composition between the PFZ and STZ could influence the 230Thxs scavenging efficiency and explain this difference. An innovative coupling between 234Th and 230Thxs was then used to simultaneously constrain the settling velocities of small (0.6–60 μm) and large (above 60 μm) particles. Although the different hydrological and biogeochemical regimes visited during the ANTARES IV cruise did not explain the spatial variation of sinking velocity estimates, our results indicate that less particles may reach the seafloor north (60 ± 2 m d− 1, station 8) than south of the Agulhas Return Current (119 ± 23 and 130 ± 5 m d− 1 at stations 3 and 7, respectively). This information is essential for understanding particle transport and by extension, carbon export. In the deep water column, the 230Thxs concentrations did not increase linearly with depth, probably due to lateral transport of North Atlantic Deep Water (NADW) from the Atlantic to the Indian sector, which renews the deep waters and decreases the 230Thxs concentrations. A specific 230Thxs transport model is applied in the deep water column and allows us to assess a “travel time” of NADW ranging from 2 to 15 years.  相似文献   

20.
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 μM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 μM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as “semi-labile” DOM. The “semi-labile” pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号