首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
黄海及其邻近地区的Pn波速度与各向异性   总被引:12,自引:9,他引:3       下载免费PDF全文
利用中国东部地震台网和ISC 报告1980~2004年的地震走时数据,反演了黄海及其邻近地区的Pn波速度和各向异性,根据岩石层地幔的横向非均匀性分析了区域地质构造的深部特点.Pn波速度的变化与区域地质构造有一定的对应关系,黄海地区上地幔顶部的P波平均速度较高,没有发现明显的低速异常,表明上地幔顶部不存在大范围的地幔扰动.速度异常的分布表明,南黄海东部和西部有可能分属于不同的构造块体,其间的分界大致对应于南北走向的黄海东部断裂带,具有相对较低的Pn波速度.边界东、西两侧的Pn波各向异性存在明显的差异:南黄海西部Pn波的快波方向以北东—北北东方向为主,反映了海区内部扬子块体向北运动产生的构造变形;南黄海东部Pn波的快波方向为南北方向,与黄海东部断裂带的走向基本一致,说明黄海东部和西部之间存在一个深达岩石层地幔的南北向转换边界.结合相关资料估计黄海东部断裂带在中生代时期发生了右旋走滑运动,以响应中国东部郯庐断裂带的大规模左旋剪切以及南黄海扬子块体的向北嵌入.  相似文献   

2.
—As part of an integrated seismic study, polarization of shear waves has been analyzed for teleseismic events recorded at a set of permanent broadband, semi-permanent long- and short-period and temporary short-period seismological stations located in two geodynamically important areas in western Europe, namely the Rhinegraben-Urach area and the French Massif Central volcanic field.¶While for the semi-permanent and the permanent stations there is a good azimuthal coverage of teleseismic earthquakes which allowed us to investigate the azimuthal dependence and the spatial variation over short distances of an anisotropy direction, no even azimuthal distribution of teleseismic recordings with a clear elliptical (or linear) polarization of the S phases could be obtained in the case of the temporary stations.¶While the mean values of the splitting parameters φ and δt are geographically coherent for adjacent stations, our results show a large scatter of the individual splitting parameters for the set of events used. The magnitude of the splitting time suggests that the deformation extends below the lithosphere and that the thickness of the anisotropic structure is at least 100–200 km.¶For some stations located in the Rhinegraben-Urach area (ECH, RG-N, RG-S, RBG), the variations of φ are consistent with a two-layer anisotropic model as suggested by Vinnik et al. (1994) for the South German Triangle. For the stations ECH (Vosges mountains), RG-N and RG-S (Rhinegraben proper), the resulting estimates of fast direction are around N10°E–N30°E and N80°E–N100°E for the upper and lower layers, respectively. For the station RBG (Urach), the results are N60°E–N70°E and N125°E–N135°E, respectively.¶In the Rhinegraben-Urach area, the estimates of the effective fast direction for a one-layer model show a rotation from a graben-related (30°) pattern to an Alpine belt-related pattern in the eastern part (≈ E–W). In the French Massif Central region, the results reveal two distinct fast polarization patterns. While to the west of the Sillon Houiller, φ is parallel to this late-variscan transformlike fault zone and perpendicular to the variscan belt, it is to the east rather perpendicular to the Alpine belt. The results suggest a mixture of both a lithospheric and an asthenospheric component of the seismic anisotropy for the Rhinegraben-Urach as well as for the French Massif Central areas.  相似文献   

3.
内蒙古阿巴嘎地区壳幔经历强烈变形,岩石圈变形机制尚不明确.利用布设在研究区的32个流动地震台站所记录到的远震剪切波数据,测量得到120对各向异性参数和113个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.77±0.21s;各向异性快波方向变化范围为N101°E-N45°W.其中一组快波偏振方向为N82.0°E±12.3°,与区域内断裂走向平行,反映地幔矿物晶格定向排列;另一组快波方向集中位于华北克拉通内部,平均为N146.8°E±9.5°,平行于早白垩纪岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.在研究区北部部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能存在局部热地幔物质上涌.  相似文献   

4.
The goal of this paper is to study the velocity field and deformation parameters in Southern Spain and surrounding areas (Ibero-Maghrebian region) using GPS episodic measurements. Results are compared to those previously published as well as deformation parameters derived from seismic data. For this purpose, a geodetic GPS network of 12 stations was observed during eight field campaigns from 1998 to 2005 by the San Fernando Naval Observatory (ROA), Spain. Relative GPS velocities in the Gulf of Cadiz with respect to the stable part of Eurasia are ~4.1 mm/yr in a NW–SE to NNW–SSE direction. In the Betics, Alboran Sea and North of Morocco, velocities are ~4.4 mm/yr in a NW–SE direction, and they are ~2.3 mm/yr in a N–S direction in the eastern part of the Iberian Peninsula. These results are in agreement with the anticlockwise rotation of the African plate. GPS strain tensors are determined from the velocity model, to obtain a more realistic crustal deformation model. The Gulf of Cadiz is subjected to uniform horizontal compression in a NNW–SSE direction, with a rotation to N–S in the Alboran Sea and Northern Morocco. An extensional regime in a NW–SE direction, which rotates to W–E, is present in the Internal Betics area. In the Betic, Alboran Sea and North of Morocco regions we compare seismic deformation rates from shallow earthquakes with the determined GPS deformation rates. The comparison indicates a seismic coupling of 27%, while the remaining 73% might be generated in aseismic processes. Deformations measured in the Ibero-Maghrebian region with GPS could be interpreted in terms of either elastic loading or ductile deformation.  相似文献   

5.
本文利用架设在内蒙古阿巴嘎地区38个宽频带地震台站记录到的远震数据,通过拟合P波接收函数径向Pms转换波到时和叠加不同方位切向分量,确定了地壳各向异性参数.结果表明,大部分台站Pms延迟时间在0.35 s左右;而少数台站时差较大,推测可能受到索伦缝合带附近地壳残留倾斜界面影响.各向异性快波方向变化范围在N95°E到N180°E之间,平均为N130.6°E±19.1°,推测中下地壳矿物在ENE-WSW向区域主压应力作用下发生晶格定向排列可能是导致地壳各向异性的主要成因.研究区壳幔变形特征和机制不同,属于解耦变形.  相似文献   

6.
—SKS phases observed at broadband stations in Germany show significant shear-wave splitting. We have analyzed SKS and SKKS phases for shear-wave splitting from 13 stations of the German Regional Seismic Network (GRSN), from 3 three-component stations of the Gräfenberg array (GRF) and from one Austrian station (SQTA). The data reveal strong differences in the splitting parameters (fast direction φ and delay time δt from a single event at various stations as well as variations at the individual stations for events with different backazimuths. The backazimuthal variations of the splitting parameters at some stations can be explained by two-layer anisotropy models with horizontal symmetry axes. The best resolved two-layer model is the GRA1 model (upper layer φ = 40°, δt = 1.15s; lower layer φ = 115°, δt = 1.95s). The upper layer can be attributed to the lithosphere. Because of the magnitude of the delay time of the upper layer, the lower layer must lie within the asthenosphere. At other stations splitting parameters are consistent with an anisotropic one-layer model for the upper mantle. Stations near the Bohemian Massif show fast directions near EW. Throughout NE Germany the directions are oriented NW/SE. The reason for this direction is probably the nearby Tornquist-Teisseyre line. The observed fast axes are subparallel to this prominent Transeuropean suture zone. At stations in southern Germany near the Alps we observed ENE/WSW directions. Below some stations we also found indications of inclined anisotropic layers.  相似文献   

7.
A crustal tomographic image, from the surface down to 35 km depth beneath the Betic Cordillera (southern Spain), is obtained using data on local earthquakes recorded at stations from the National and Andalusian Seismic Networks. The velocity structure and the hypocentre locations are derived from the inversion of P first arrival times, using an iterative simultaneous inversion method. The reliability of the results is assessed using different control parameters. The inverted velocity field in the uppermost layers shows a significant lateral variability which reflects most of the large-scale geological features of the Betic Cordillera. Well determined local surface anomalies allow to constrain the location and geometry of the most prominent Neogene sedimentary basins. The upper crust is well resolved throughout the whole region, and is characterized by relatively high velocities in the Internal Betics and in the South Iberian Massif and lower velocities within the External Betics. A relatively well constrained event cluster displays a NNE–SSW trend, and outlines the contact zone between the Internal and the External domains. The middle and lower crustal levels show reliable results beneath the central part of the Betic Cordillera. High averaged velocities are obtained within the South Iberian and the Alboran domains, in contrast to a relatively low velocity anomaly which characterizes the boundary between them. These findings support the hypothesis of the lack of well differentiated crustal levels below the contact zone, while crustal layering is better defined beneath the Alboran and the Iberian domains.  相似文献   

8.
Parameters of split shear waves from local earthquakes in the area of the PET IRIS station (town of Petropavlovsk-Kamchatski) were measured over the period 1993–2002 for the study of anisotropic properties of rocks in the subduction zone and variations in the fast azimuth of the fast shear wave (?). The dominating fast shear wave polarization directions were oriented in 1993–2002 along N90°E ± 20° in agreement with the direction of the Pacific plate motion. The normalized shear wave delay times δt SS increase to a depth of 150 km. The values of δt SS are largest (up to 20 ms/km) for earthquakes at depths of 50–60 and 90–150 km and smallest (up to 6 ms/km) for earthquakes at depths greater than 200 km. The fast azimuths for events with H < 80 km are described in terms of a horizontal transversely isotropic (HTI) model of the medium, with the axis oriented northward. Temporal variations in the fast azimuths with an amplitude of up to 90° and a predominant period of about 400–600 days are observed for events at depths of 80–120 km. The anisotropy of rocks is described by effective models of the orthorhombic and HTI symmetries. The predominant fast shear wave fast azimuths from events at depths of 120–310 km vary with time: the polarization axis was oriented to the north in 1993–1995, to the north and east in 1996–1998, to the east in 1999–2000, and to the northeast and southeast in 2001–2002. The anisotropy of rocks can be described in terms of the HTI model with the symmetry axis subparallel to the focal zone dip.  相似文献   

9.
鄂尔多斯块体北缘与西缘地区地壳各向异性特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究使用内蒙古自治区数字测震台网2010年1月至2017年10月区域小地震的波形记录资料,采用SAM方法,进行了地壳剪切波分裂的分析,得到鄂尔多斯块体北缘与西缘地区地壳介质地震各向异性的初步研究结果.根据15个台站161个有效地震记录的分析,鄂尔多斯块体北缘与西缘地区的快剪切波平均偏振方向为NE44.4°±38.4°,慢剪切波平均时间延迟为1.7±1.6ms·km~(-1).研究区域的快剪切波偏振显示出两个优势方向,一个是NE方向,另一个是近NS方向.区内的逆冲凸起与走滑正倾断层构造对剪切波分裂产生了直接的影响,造成了剪切波分裂参数的复杂分布,反映了剪切波分裂参数受到区域应力和构造共同作用的影响.鄂尔多斯块体北缘的快波偏振特征有NE和近NS两个优势偏振方向,其东区与西区的快剪切波偏振表现出明显不同的特征.东区的第一快剪切波优势偏振方向为NE,第二快剪切波优势偏振方向为近NS;西区的第一快剪切波优势偏振方向为近EW,第二快剪切波优势偏振方向为近NS.鄂尔多斯块体北缘的区域背景主压应力方向可能总体上为近NS方向,但空间分布有差异,东区NE方向的优势偏振与西区近EW方向的优势偏振更可能反映了断裂与构造的影响.鄂尔多斯块体西缘的快剪切波偏振特征显示出非常清楚的NE向的优势偏振方向,近NS向的优势偏振方向则不太明显,反映出该地区复杂构造对各向异性分布的影响.慢波时间延迟呈现出西低东高的特点,时间延迟的高值出现在鄂尔多斯块体北缘的东部,时间延迟的这种西低东高的各向异性强度变化,可能反映了区域构造活动西强东弱的特性.  相似文献   

10.
Shear-wave splitting in the southeast of Cathaysia block, South China   总被引:2,自引:0,他引:2  
This study is focused on Fujing Province in China, southeast of Cathaysia block (SECB). The present work benefits from the data provided by the Fujian Seismic Network (FJSN) to study the seismic anisotropy in the crust. By means of a systematic analysis and adequate software package, we examine shear-wave splitting from data recorded at ten FJSN stations during the period January 1999 to December 2003. The results demonstrate that the average fast wave polarization is N109.4° E ± 42.6°, corresponding to the horizontal principal compressive stress in the test zone, and the average normalized slow wave time delay is 2.5 ± 1.5 ms/km. The predominant polarizations at stations in the eastern part of SECB are in the N–W direction, which suggests that they are related to the regional horizontal principal compressive stress and also to the strikes of faults. In contrast, the predominant polarizations at two stations in the western part of SECB are in the N–E direction. This polarization direction does not coincide with the direction of the horizontal principal compressive stress, but it follows the strikes of near faults, thus suggesting the influence of the local tectonics and a change in the stress field. The results prove that the predominant polarizations are parallel to the strikes of faults whenever the stations are on active faults. At a few stations near the coastal line, some polarizations show a certain amount of scatter which may be caused by crossing faults and irregular topography. Finally, the spatial distribution of time delays depicts strong lateral variations near the coast just where the seismic activity is comparatively bigger, so that the magnitude of anisotropy seems to be consistent with the most seismically active area.  相似文献   

11.
Based on a large set of arrival times of the Pg phase reported by local and regional stations, we estimate azimuthal anisotropy of the Pg-wave velocity in focal volumes of the upper crust in NW Croatia. The method is based on analyses of the azimuthal dependence of ratios of cumulative differences of arrival times and travel paths between foci of earthquake pairs, computed for rays propagating within narrow azimuthal windows. The results clearly indicate the presence of anisotropy of 3.3% with the direction of fast velocity (approximately NNE-SSW) coinciding with the direction of the maximum tectonic pressure as revealed by 23 available focal mechanisms and previous geological investigations. Although a large part of observed anisotropy can be explained assuming that focal volumes are pervaded by a system of vertical extensive-dilatancy anisotropy (EDA) cracks aligned under the influence of local tectonic stress field, there is indication that — to a smaller extent — some role was also played by alignment of structural features in the region.  相似文献   

12.
青藏高原东南缘作为高原物质侧向挤出的前沿地带,是研究岩石圈变形机制、高原物质侧向逃逸和深部动力学等科学问题的关键地区之一.本文利用研究区内540个宽频带流动地震台站记录的远震面波资料,基于程函方程面波层析成像方法获得了青藏高原东南缘周期14~80 s瑞利面波相速度和方位各向异性分布图像.结果显示:14~20 s周期内,面波方位各向异性分布与断裂带的走向和最大主压应力的方向密切相关,可能受到了断裂带和区域构造应力场的共同作用.川滇菱形块体的北部次级块体及丽江—小金河断裂带附近随着面波周期的增加,各向异性快波方向从NS向逐步转变为NE-SW方向,并与断裂带大致平行,而其以南的攀枝花附近表现为高相速度和弱各向异性的特征.我们推测,在川滇菱形块体北部存在明显的下地壳流,流动方向与块体向南的挤出方向基本一致,该地壳流受到攀枝花附近的高速、高强度坚硬块体阻挡,其前缘向西南方向流动.川滇菱形块体中部地区由于坚硬块体的存在,下地壳没有明显的通道流.在红河断裂以西地区,30~60 s周期范围的面波各向异性快波方向和红河断裂大致平行,推测可能与渐新世至中新世早期印支地块向南东方向的挤出密切相关.研究区东北部,四川盆地南缘地壳各向异性以NE-SW和NEE-SWW向为主与SKS快波方向明显不同,推测主要与该地区地壳的早期构造变形有关同时也说明SKS各向异性主要来自上地幔介质;在研究区南部104°E以西的中长周期面波各向异性方向与SKS分裂研究获得的近EW快波方向基本一致,但在104°E以东地区面波各向异性较弱且快波方向与SKS的观测结果存在明显差异,我们推测东部SKS各向异性来源深度至少在150 km以下.  相似文献   

13.
蒙古中南部地区地壳各向异性及其动力学意义   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙古中南部地区布设的69套宽频带数字地震仪2011年8月—2013年7月记录的远震事件,使用时间域反褶积方法提取接收函数,并挑选高质量Pms震相,通过改进的剪切波分裂方法对研究区地壳各向异性参数进行了研究,最终获取了1473对各向异性参数.经过统计分析,有48个台站可以归纳出两个方向的各向异性,11台站得到单个方向的各向异性,而剩余10个台站各向异性方向比较发散.结果显示,各向异性在蒙古中南部地壳中呈不均匀分布,有54个台站得到了NE-SW向各向异性,快波偏振方向平均值为N58°E±16°,与最大水平主应力σHmax方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因存在于上地壳,可能与流体填充的微裂隙有关.而NW-SE向各向异性在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳成岩矿物晶体定向排列是各向异性的主要成因.研究区地壳各向异性的分层特征总体上支持岩石圈受到NE-SW向挤压的动力学模型.  相似文献   

14.
王琼  高原 《地球物理学报》2018,61(7):2760-2775
本研究收集了甘肃、青海、宁夏等118个宽频带数字地震台站的连续波形资料,利用噪声互相关,经过计算和筛选,在5~38 s范围内,共得到5773条瑞利波相速度频散曲线.然后采用1°×1°的网格划分,反演获得青藏高原东北缘相速度和方位各向异性分布.结果表明:短周期8~12 s内,鄂尔多斯从低速异常变为高速异常;该周期范围内各向异性结果与区域断裂走向有很好的一致性.18~25 s周期内,祁连地块、松潘-甘孜地块、羌塘地块低速异常范围逐渐变大,随周期增加地壳低速异常与人工探测结果相符;鄂尔多斯表现为速度随周期增加逐渐变大,说明其中下地壳速度相对偏高,不存在低速异常;该周期范围内的各向异性特征表现为,祁连地块和松潘甘孜地块大致呈NW-SE方向,而青藏高原内部快波方向显示了顺时针旋转的形态.在30~35 s范围内面波速度主要受莫霍面深度和莫霍面附近介质速度的影响,与地壳厚度分布有非常好的吻合.综合不同方法获得的各向异性研究结果,支持印度-欧亚板块的碰撞使青藏高原东北缘地壳发生缩短和逐渐隆升的观点,认为整个岩石圈的垂直缩短变形是青藏高原东北缘的主要形成机制.  相似文献   

15.
基于青藏高原东北缘甘肃区域台网41个宽频带地震台站的远震记录资料,通过PKS、SKS和SKKS震相的剪切波分裂分析,获取了台站下方介质的各向异性分裂参数,得到该地区上地幔各向异性分布图像,并结合GPS速度场和地壳剪切波各向异性分析青藏高原东北缘各向异性形成机制及壳幔各向异性特征.分析结果认为,在阿尔金断裂带西侧,各向异性快波偏振呈NWW-SEE方向,与断裂带走向有一定夹角,与塔里木盆地向柴达木盆地俯冲方向一致,说明该地区上地幔物质变形主要受古构造运动的影响,属于"化石"各向异性.在祁连山-河西走廊构造区,XKS快波偏振呈NW-SE方向,一致性较好,与区域断层走向方向相同;由区域小震的地壳剪切波分裂分析得到的地壳剪切波快波偏振在该区域呈NE-SW方向,与相对于稳定欧亚大陆GPS运动速率一致,地壳和地幔快波偏振方向的差异表明壳幔变形可能有不同的形变机制.在陇中盆地及其周缘,由于处于活跃青藏地块与稳定鄂尔多斯地块之间的过渡带,相对于其他区域具有更加复杂的构造背景,地壳快波偏振和地幔快波偏振总体上呈NWW-SEE方向,说明壳幔变形机制可能相同;但不同台站结果之间存在一定离散性,推测是由于受局部构造特征差异性造成.  相似文献   

16.
This study examines the role of gravitational potential energy (GPE) in generating second-order (spatial scale ∼102 km) variations in the Iberia stress and strain-rate patterns. We present a new map of present-day strain rate field derived from the secular velocity field computed using all available continuously operating Global Navigation Satellite Systems (GNSS) stations in Iberia. The estimated strain rate field is generally consistent with the tectonic framework of the Iberian region, even though sporadic sharp local variations downgrade its correlation with the regional stress patterns. Many of the sharp spatial variations in the strain rate map are consistent with local changes of deformation style determined by prevailing faults. To obtain a more accurate estimate of GPE we use new data on the structure of the crust and apply a thin sheet approach using a 3-D definition of deviatoric stress. The GPE is derived from two isostatically compensated models (GPEd and GPEe compensated by density and elevation adjustment, respectively) and from the truncated geoid (GPEg). The GPE stresses are then summed with the first-order stress field due to the Eurasia–Nubia (EU–NU) convergence and the results compared with both the stress and strain rate data. In agreement with previous studies, we find that the GPE does not significantly change the NW–SE average direction of the most compressive stress (SHmax) imposed by the EU–NU collision, its main effect being to cause spatially changing stress regimes. From the analysis of the different GPE models we find: (1) in the Pyrenees, the tectonic forces have a secondary role when compared to the GPE. In this region, the model that best correlates with observations is the one emphasizing the role of surface elevation as a source of GPE (GPEe); (2) in the Iberian Chain and the Betics, the GPE imposes NE–SW extension consistent with a strike-slip regime and is equally (GPEe) or more (GPEg) important than the tectonic forces. In these regions, both deep heterogeneities associated with mantle convection and elevation are important sources of GPE; (3) in western Iberia, the GPE differences work against dominant tectonic forces by reducing the SHmax magnitude. The GPEg model is the one that best predicts the average strike-slip regime in Galicia; and finally (4) in the Gulf of Cadiz the gravitational potential stresses have a minor role and the style of deformation is clearly controlled by the tectonic forces.  相似文献   

17.
This study focuses on the southeast Capital area of North China (38.5–39.85° N, 115.5–118.5° E). Shear-wave splitting parameters at 20 seismic stations are obtained by a systematic analysis method applied to data recorded by the Capital Area Seismograph Network (CASN) between the years 2002 and 2005. Although some differences in the results are observed, the average fast-wave polarization is N88.2° W ± 40.7° and the average normalized slow wave time delay is 3.55 ± 2.93 ms/km. The average polarization is consistent with the regional maximum horizontal compressive stress and also with the maximum principal strain derived from global positioning system measurements in North China. In spite of the uneven distribution of faults around the array stations that likely introduce some amount of scatter in the shear-wave splitting measurements, site-dependent polarizations of fast shear wave are clearly observed: in the northern half of the study area, the polarizations at CASN stations show E–W direction, whereas in the southern half the polarizations exhibit a variety of possible azimuths, thus suggesting dissimilar stress field and tectonic frame in both areas. Comparing the splitting results with those previously obtained in the northwest part of the region, we find a difference in polarization of about 20° between the southeast and northwest parts of the Capital area; also, in the southeast Capital area the average time delay is smaller than in the northwest Capital area, thus making clear that the magnitude of crustal seismic anisotropy is not the same in the two zones. Being the shear-wave splitting polarizations in the southeast Capital area, which lies on the basin, clearly different from the observed polarizations in the northwest Capital area, where uplifts and basin converge, it is quite evident that the shear-wave splitting results are consequence of the tectonics and stress field affecting the two regions.  相似文献   

18.
本文利用布设在云南腾冲地区的15个固定和流动地震台站记录的近震波形数据,采用剪切波分裂分析方法得到了593对高质量的各向异性分裂参数.结果显示,腾冲火山区地震台站下方的近震各向异性的慢波延迟时间为0.02~0.37 s,平均延迟时间0.2 s.结合已有接收函数地壳各向异性研究结果,推测研究区地壳各向异性的主要贡献源自中上地壳.研究区不同台站的快波偏振方向变化很大,似乎反映了构造和区域应力场的共同作用.其中腾冲火山断裂西侧多数台站的快波偏振方向呈近N-S向,而东部多数台站的快速偏振方向呈NE-SW向,与区域主压应力方向一致,暗示研究区中上地壳各向异性主要是受主压应力引起定向排列的裂隙所致.基于近震走时得到的研究区平均VP/VS为1.68,推测腾冲火山区地壳应力场的局部变化可能与上地壳中富含气体的中酸性岩浆膨胀活动有关.另一方面,在腾冲火山区外围个别台站(MIZ、MZT)观测到了快波偏振方向与主压应力、已知断层等构造走向不一致的现象,暗示其各向异性是构造或构造和区域应力场共同作用的结果.  相似文献   

19.
中国东北新生代板内火山广泛发育,其中诺敏河火山由于上地幔结构研究的匮乏,火山成因尚不明确.利用布设在诺敏河火山周围的40个流动台站所记录到的远震剪切波数据,测量得到82对各向异性参数和219个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.78±0.21s;各向异性快波方向范围为N77°W—N18°E,绝大多数快波方向集中在N6.9°W±9.87°,平行于中生代晚期岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.同时,在火山中心及周边部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能是由于残存在岩石圈内的古老形变被上涌的热地幔物质所侵蚀.  相似文献   

20.
The parameters of split S waves from local weak earthquakes along eastern Hokkaido Island are studied over the period of 2003, including the strong Tokachi-oki September 26, 2003 earthquake (M = 8.0). Earthquake records of five stations belonging to the ISV seismological network were used. The studies of the split S wave parameters showed that they vary in space and time along Hokkaido Island. The zones of the Hidaka Mountains (ERM, MYR), Tokachi Plain (IWN, URH), and Kushiro Plain (AKK) are distinguished along Hokkaido. The anisotropy coefficients beneath the ERM, MYR, IWN, URH, and AKK stations attain 10.5, 10, 5, 3.5, and 6.5%, respectively. Beneath ERM, azimuths of the fast S wave (?) are predominantly in the N-S direction until July and in the E-W direction from July (parallel and normal to the Japan trench strike). By the time of the Tokachi-oki earthquake, the ? directions were oriented SE in agreement with the direction of the Pacific plate motion. The ? directions on the northern side of the Hidaka Range (MYR) are predominantly orthogonal to those beneath ERM, which can be evidence for differences in the direction of deformations on opposite sides of the range. Higher seismicity, the variation of S wave parameters, and a high anisotropy of the medium point to an intense development of deformation (dilatancy) processes in the area of the Hidaka Mountains. The fast wave azimuths beneath AKK are predominantly 50°–70°, and this orientation is consistent with the direction of migration of the Kurile arc front along the trench. Beneath IWN, the azimuths ? are oriented along the N-NE directions, and beneath URH, along the direction of the Pacific plate motion (100°–150°). Strengthening of mechanical properties of the medium and development and accumulation of shear deformations in a subhorizontal plane are supposed to take place in the Tokachi Plain area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号