首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Modern climate research has shown that the Asian summer monsoon water vapor transport is limited to the eastern part of the Qilian Mountains. On the Holocene millennial-scale, whether the northwest boundary of the summer monsoon varies according to climate change is a key scientific issue. Yanchi Lake is located in the northern Qilian Mountains and the middle of the Hexi Corridor, where the modern climate is less affected by the Asian summer monsoon. It is a key research area for examining the long-term variations of the Asian summer monsoon. Paleoclimatic data, including AMS ^14C dates of pollen concentrates and bulk organic carbon, lithology, grain-size, mineral composition and geochemical proxies were acquired from sediments of Yanchi Lake. The chronological results show that the lower part of the lacustrine section is formed mainly in the Late Glacial and early Holocene period, while the proxies' data indicate the lake expansion is associated with high content of mineral salts. The middle part of this section is formed during the transitional period of the early and middle Holocene. Affected by the reworking effect, the pollen concentrates AMS^14C dates from the middle part of the section are generally older than those from the lower part. Since the mid-Holocene, Yanchi Lake retreated significantly and the deposition rate dropped obvi- ously. The Yanchi Lake record is consistent with the Late Glacial and Holocene lake records in the Qinghai-Tibet Plateau and the climatic records in typical monsoon domain, which indicate the lake expansion and the strong Asian summer monsoon during the Late Glacial and early Holocene. The long-term monsoonal pattern is different from the lake evolution in Central Asia on the Holocene millennial-scale. This study proves the monsoon impacts on the northwestern margin of the summer monsoon, and also proves the fact that the northern boundary of the summer monsoon moves according to millennial-scale climate change.  相似文献   

2.
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the nttmber of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973-2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973-1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.  相似文献   

3.
As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much attention of the scientists for a long time. The precursors have done substantive researches by using the lake sediment, which deepen our understanding of the climate changes in this region. Although sand dunes and loess sediment are widely distributed around the lake, so far the researches on geochemical elements from aeolian sediment have been less reported. In this paper, we selected a typical aeolian profile on the east of Qinghai Lake. Based on systematic sampling and analysis of seven major geochemical elements, combined with OSL dating and previous researches, this paper discusses climate changes in the Qinghai Lake area since 12.5 ka B.P.. Our conclusions are: (1) Before 12.5 ka B.P., the climate in this region was dry, cold, and accompanied by strong wind-sand activities. (2) During 12.5–11.9 ka B.P., the climate became warm and wet. However, there was an abrupt climate cooling event during 12.2–11.9 ka B.P., which likely corresponded to the Younger Dryas event. (3) During 11.9–8.0 ka B.P., the climate fluctuated greatly and frequently from warm to cold, and three cooling events occurred. (4) During 8.0–2.6 ka B.P., the climate was warm and humid. (5) Since 2.6 ka B.P., similar to the modern climate, the climate was mainly dry and cold.  相似文献   

4.
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the number of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973–2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973–1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.  相似文献   

5.
Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Pla-teau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution. Here we present a high-resolution pollen record from a 40.92-m-long sediment core (DLH) taken from Dalianhai, a terminal lake situated in the Gonghe Basin, the northeast Tibetan Plateau for reconstructing the vegetation and climate history since the last deglacial on the basis of a chronology controlled by 10 AMS 14C dates on plant remains preserved in the core sediments. The pollen assemblages in DLH core can be partitioned into 6 pollen zones and each zone is mainly characterized by the growth and decline of tree or herb pollen percentage. During the periods of 14.8-12.9 ka and 9.4-3.9 ka, the subalpine arboreal and local herbaceous pollen increased, indicating the subalpine forest developed in the surrounding mountains and a desert steppe or typical steppe developed in Gonghe Basin under a relatively moister climate. During the periods of 15.8-14.8 ka, 12.9-9.4 ka and 3.9-1.4 ka, the forest shrank or disappeared according to different degrees of aridity, and the desert steppe degraded to a more arid steppe desert in the basin, indicating a dry climate. After 1.4 ka, vegetation type around Dalianhai was mainly dominated by steppe suggested by increased Artemisia. Our results suggested the climate history in this region was dry from 15.8-14.8 ka, humid from 14.8-12.9 ka and dry from 12.9-9.4 ka, after which the climate was humid during 9.4-3.9 ka, followed by dry conditions during 3.9-1.4 ka and humid conditions in the last 1.4 ka. The change of pollen percentage and the evolution of palaeovegetation in Dalianhai since the last deglacial were similar to those recorded in Qinghai Lake. The forest expanded in the mountains around Dalianhai during the B?l-ling-Aller?d period, shrank during the Younger Dryas and the early Holocene, then it devel-oped and reached its maximum in the mid-Holocene. During the late Holocene, the vegetation began to shrink till disappearance. However, the timing of forest expansion in the Holocene lagged behind that of Qinghai Lake, and this spatial heterogeneity was probably caused by the different forest species between these two places. The maximum of forest development in the mid-Holocene was inconsistent with the period of stronger summer monsoon in the early Holocene indicated by stalagmite records, the reason might be related to the complexity of vegetation response to a large-scale climatic change.  相似文献   

6.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   

7.
The lake hydrological and meteorological data of the Tibetan Plateau are not rich. This research reports the observed climatic data and measured water levels of saline lakes from the local meteorological stations in the Zabuye salt lake, the Dangqiong Co salt lake and the Bankog Co salt lake in recent two decades. Combining with satellite remote sensing maps, we have analyzed the changes of the water level of these three lakes in recent years and discussed the origins of the changes induced by the meteorological factors. The results show that the annual mean temperature and the water level reflect a general ascending trend in these three lakes during the observation period. The rising rates of the annual mean temperature were 0.08℃/yr during 1991–2014 and 0.07℃/yr during 2004–2014, and of the water level, were 0.032 m/yr and 0.24 m/yr, respectively. Analysis of changes of the meteorological factors shows the main cause for the increase of lake water quantity are the reduced lake evaporation and the increased precipitation in the lake basins by the rise of average temperature. Seasonal variation of lake water level is powered largely by the supply of lake water types and the seasonal change of regional climate.  相似文献   

8.
Lake ice phenology is considered a sensitive indicator of regional climate change. We utilized time series information of this kind extracted from a series of multi-source remote sensing(RS) datasets including the MOD09 GQ surface reflectance product, Landsat TM/ETM_+ images, and meteorological records to analyze spatiotemporal variations of ice phenology of Qinghai Lake between 2000 and 2016 applying both RS and GIS technology. We also identified the climatic factors that have influenced lake ice phenology over time and draw a number of conclusions. First, data show that freeze-up start(FUS), freeze-up end(FUE), break-up start(BUS), and break-up end(BUE) on Qinghai Lake usually occurred in mid-December, early January, mid-to-late March, and early April, respectively. The average freezing duration(FD, between FUE and BUE), complete freezing duration(CFD, between FUE and BUS), ice coverage duration(ICD, between FUS and BUE), and ablation duration(AD, between BUS and BUE) were 88 days, 77 days, 108 days and 10 days, respectively. Second, while the results of this analysis reveal considerable differences in ice phenology on Qinghai Lake between 2000 and 2016, there has been relatively little variation in FUS times. Data show that FUE dates had also tended to fluctuate over time, initially advancing and then being delayed, while the opposite was the case for BUS dates as these advanced between 2012 and 2016. Overall, there was a shortening trend of Qinghai Lake's FD in two periods, 2000–2005 and 2010–2016, which was shorter than those seen on other lakes within the hinterland of the Tibetan Plateau. Third, Qinghai Lake can be characterized by similar spatial patterns in both freeze-up(FU) and break-up(BU) processes, as parts of the surface which freeze earlier also start to melt first, distinctly different from some other lakes on the Tibetan Plateau. A further feature of Qinghai Lake ice phenology is that FU duration(between 18 days and 31 days) is about 10 days longer than BU duration(between 7 days and 20 days). Fourth, data show that negative temperature accumulated during the winter half year(between October and the following April) also plays a dominant role in ice phenology variations of Qinghai Lake. Precipitation and wind speed both also exert direct influences on the formation and melting of lake ice cover and also cannot be neglected.  相似文献   

9.
Lakes in the Tibetan Plateau are considered sensitive responders to global warming.Variations in physical features of lake systems such as surface area and water level are very helpful in understanding regional responses to global warming in recent decades.In this study,multi-source remote sensing data were used to retrieve the surface area and water level time series of five inland lakes in the south-central part of the Tibetan Plateau over the past decades.Changes in water level and surface area of the lakes were investigated.The results showed that the water level of three lakes(Puma Yumco,Taro Co,Zhari Namco) increased,with expanding surface area,while the water levels of the other two lakes(Paiku Co,Mapam Yumco) fell,with shrinking area.The water levels of the lakes experienced remarkable changes in 2000–2012 as compared with 1976–1999.Spatially,lakes located at the southern fringe of the Tibetan Plateau showed consistency in water level changes,which was different from lakes in the central Tibetan Plateau.  相似文献   

10.
Tectonic movements and climate changes are two main controllers on the development of landfrorm.In order to reconstruct the history of the evolution of the landform in the Fenhe drainage basin during middle-late Quaternary comprehensively,this paper has provided a variety of geomorphological and geologic evidences to discuss how tetonic movements and climate changes worked together to influence the landform processes,According to the features of the lacustrine and alluvial terraces in this drainage basin,it is deduced that it was the three tectonic uplifts that resulted in the three great lake-regressions with an extent of about 40-60 m and the formation of the three lacustrine terraces.The times when the tectonic uplifts took place are 0.76 MaBP,0.55 MaBP and 0.13 MaBP respectively,synchronous with the formation of paleosol units S8,S5 and S1 respectively.During the intervals between two tectonic uplifts when tectonic movement was very weak ,climate changes played a major role in the evolution of the paleolakes and caused frequent fluctuations of lake levels.The changes of the features of lacustrine sediment in the grabens show the extent of such fluctuations of lake level is about 2-3m.  相似文献   

11.
刘向军 《盐湖研究》2018,26(2):16-26
青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11~8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度的波动。全新世气候适宜期出现在8~6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。  相似文献   

12.
李育  刘媛 《地理学报》2016,71(11):1898-1910
为了探讨中国长时间尺度湖泊时空演变规律和潜在的驱动机制,本文在柯本气候分区和中国季风—非季风区的划分基础上,对中国34个有明确数据的典型湖泊运行CCSM 3.0气候模拟系统和水量能量平衡模型模拟其水位变化,同时利用NCEP/NCAR再分析资料对中国按水汽输送划分的季风区进行验证。结果表明,末次盛冰期以来中国湖泊演化主要受千年尺度大气环流的驱动影响,在各个柯本气候区内没有明显的规律性。末次盛冰期以来,在季风区中国湖泊演化主要有早中全新世湖泊水位相对较高以及末次盛冰期和早全新世湖泊水位均较高2种演变规律;在东亚干旱区主要有中晚全新世期间湖泊水位相对较高以及末次盛冰期和中全新世湖泊水位均较高2种演变规律。本文为中国过去气候变化及湖泊演化机制研究提供新的证据,同时为人类全面认识末次盛冰期以来湖泊水位变化提供了新的视角。  相似文献   

13.
张风菊  薛滨  于革 《地理学报》2021,76(11):2673-2684
湖泊水位高低通常能有效地指示湖盆内湿润条件的变化,进而反映区域有效降水(降水—蒸发)变化,成为重建第四纪古气候演变的重要指标之一。通过对苏联和蒙古国古湖泊数据库以及中国晚第四纪古湖泊数据库中149个湖泊水位变化资料的梳理总结,探讨了末次盛冰期(18 cal. ka BP)以来该地区干湿变化规律及区域分异。根据研究区气候特征、地理位置及已有研究成果将其分为东欧湖泊区、中东亚干旱区和中国北方季风区三大湖区。根据不同水位记录在整个湖泊历史中出现的频率,采用3级重新分类区分出高、中、低3级水量,并把每个湖泊数字化的3级古水量表示成与现代的差值,得到每个湖泊样点每千年时间间隔内相对现代的5级水量变化(很湿润、湿润、无变化、干旱和很干旱)。结果表明,三大湖区末次盛冰期以来可能经历了不同的干湿变化过程:东欧地区湖泊水量记录在晚冰期之前较少,至全新世逐渐增多,且基本表现为早全新世干旱、中晚全新世相对湿润的状况。中东亚干旱区整体呈现出末次盛冰期至中全新世均较湿润而晚全新世干旱的气候状况,但区域内部不同湖泊在起讫时间和强度上存在显著差异。中国北方季风区的湿润期主要发生在早中全新世,但是不同湖泊有所不同。对比分析显示,早全新世时东欧地区东部气候随着斯堪的那维亚冰流的逐渐消退而逐渐变湿润,中全新世由于夏季北欧反气旋东翼的气旋气流增强而达到最湿润状态,西部地区早全新世由于强劲的西伯利亚热高压存在而整体偏干旱,中全新世由于夏季亚洲季风的渗透而转为湿润。中东亚干旱区冰期内的湿润条件可能主要与西风带降水及低温低蒸发有关,而全新世则可能主要与夏季风深入内陆导致降水增加有关。中国北方季风区全新世湿度变化可能主要受东亚季风控制。  相似文献   

14.
Sediment cores from Chappice Lake, a hypersaline, groundwater-fed lake in southeastern Alberta, have been used in previous studies to reconstruct Holocene climate using lake levels as a source for proxy climate data. This assumes that the lake is fed by a shallow groundwater system sensitive to changes in climate. In this study we use the dynamics and chemistry of groundwater entering the lake to test this hypothesis.Groundwater inputs calculated from historical records using a simple water budget were highest during periods when the precipitation deficit was high. Over specific time intervals, the expected relationship between lake volumes and climate were not always found. Feedback loops between lake levels and groundwater input, and time lags within the system are the mechanisms proposed to explain these discrepancies.Field measurements suggest discharge of a local surficial groundwater system. Slug tests reveal a high conductivity system (K = 10-5 m/s) surrounding the lake. Hydraulic heads measured in standpipe, multilevel and minipiezometers installed around Chappice Lake show that the lake is situated in a closed hydraulic head contour. Hydraulic heads and water table elevations show strong annual fluctuations corresponding to seasonal changes in recharge. Horizontal hydraulic gradients measured in areas of groundwater springs indicate a strong horizontal component of flow towards the lake. Vertical hydraulic gradients are low and indicate the upward flow of water consistent with the discharge of a shallow, surfical groundwater system.Groundwater sampled from deposits surrounding Chappice Lake and springs feeding the lake have compositions similar to both shallow surficial aquifers and bedrock aquifers suggesting that the lake may be receiving inputs from both sources. However, evaporation simulations using PHRQPITZ, show that the evaporation of water typical of bedrock aquifers result in a mineral assemblage and brine composition different from that found at Chappice Lake. This suggests that discharge of a regional groundwater system can be eliminated as a dominant source over the lake's history. Evaporation simulations suggest that evaporation of groundwater from shallow surficial deposits can best explain the present mineral assemblage and brine chemistry and were likely the dominant source of water to the lake.Bedrock and shallow surficial groundwater sources have different chemistries and isotopic compositions. In hydrogeological settings such as Chappice Lake where more than one source may contribute to the lake, the relative importance of the different sources may change with changes in climate. If the source water composition to the lake changes, identifying changes in climate or hydrology based on changes in the composition of the lake preserved in sediment core will be made more difficult. This may complicate paleoclimate and paleohydrological reconstructions that rely on mineralogical and isotopic data.  相似文献   

15.
2000-2016年青海湖湖冰物候特征变化   总被引:4,自引:0,他引:4  
湖冰物候特征是气候变化的灵敏指示器。基于2000-2016年青海湖边界矢量数据,结合Terra MODIS和Landsat TM/ETM+遥感影像及气象数据,利用RS和GIS技术综合分析青海湖湖冰物候特征变化及其对气候变化的响应。结果表明:① 青海湖开始冻结、完全冻结、开始消融和完全消融的时间分别为12月中旬、1月上旬、3月中下旬和3月下旬至4月上旬,平均封冻期和平均完全封冻期为88 d和77 d,平均湖冰存在期和平均消融期为108 d和10 d。② 近16年间青海湖湖冰物候特征各时间节点变化呈现较大的差异性。湖泊开始冻结日期相对变化较小,完全冻结日期呈先提前后推迟的波动趋势,开始消融日期呈先推迟后提前的波动趋势,完全消融日期在2012-2016年呈明显提前趋势。青海湖封冻期在2000-2005年和2010-2016年呈缩短趋势,但减少速率慢于青藏高原腹地的湖泊。③ 青海湖冻结和消融的空间模式相同,即湖冰形成较早的区域则消融较早,且前者持续时间(18~31 d)整体上大于后者(7~20 d),二者相差约10 d。④ 冬半年负积温大小是影响青海湖封冻期的关键要素,但风速和降水对青海湖湖冰的形成和消融亦发挥着重要作用。  相似文献   

16.
通过分析河西走廊花海古湖泊沉积物中的盐类矿物组成,结合年代序列,重建了花海晚冰期以来湖泊演化过程及其对气候变化的响应。结果表明:晚冰期及新仙女木时期,花海湖泊以芒硝沉积为主,属硫酸盐型湖泊,湖水的盐度较高且周期性波动频繁;全新世早期(10.47 cal ka BP以前),湖泊以洪泛堆积和风成沉积为主,揭示了湖泊萎缩、甚至干涸;全新世早期至全新世中期(10.47~8.87 cal ka BP)盐类矿物以碳酸盐沉积为主,为碳酸盐型湖泊,湖水淡化,湖泊水位开始逐渐回升;全新世中期(8.87~5.50 cal ka BP)盐类矿物呈现一定的波动变化,其中,8.8 cal ka BP 时期盐类矿物以硫酸盐沉积为主,湖泊由碳酸盐型转化为硫酸盐型,湖水咸化,盐度升高;随后盐类矿物以碳酸盐沉积为主,湖泊由硫酸盐型转化为碳酸盐型,湖水盐度降低、湖泊扩张;全新世中晚期(5.50 cal ka BP以来)出现沉积间断,表明中晚全新世时期湖泊逐渐萎缩。在全新世期间,花海湖泊千年尺度演化过程揭示了该区域气候干湿状况受亚洲季风和西风共同控制的影响。  相似文献   

17.
作为高海拔生态环境的青海北部是青藏高原的重要组成部分。晚更新世晚期以来 ,青海北部气候环境一直处于冷暖、干湿波动过程之中 ,湖泊水域也发生了相应的扩张和收缩 ,成为高原人类迁移和发展的自然背景。约 3 0kaB .P .,在晚期智人出现和迁徙的关键时期 ,青海北部开始有了最早的人类活动 ;更新世末—全新世初 ,气候转暖 ,古人类再次来到青海北部 ;进入全新世中期 ,气候暖湿 ,湖水位回升 ,细石器技术变得十分普通 ,青海北部的人类活动渐趋频繁。  相似文献   

18.
卫星遥感检测高原湖泊水面变化及与气候变化分析   总被引:8,自引:0,他引:8  
对西藏西部的玛旁雍错、中部的纳木错和南部的普莫雍错三大湖泊地区,采用中巴资源卫星自1999年至2007年长时间序列的影像数据,通过最佳波段组合和时相的选取,高精度几何配准和镶嵌以及进行边缘信息提取等处理,绘制湖面变化解译图。并用一景同期ETM 图像作为辅助数据计算湖区地物光谱反射率曲线以辅助分类。为避免个别年份湖面变化出现偶然性,采用几个相邻年份湖面求取平均值的方法统计近年湖面面积。其结果与1984年中国科学院青藏高原综合科学考察队的数字对比表明,西藏南部的普莫雍错和中部的纳木错湖面有明显扩张,分别扩张了大约4.01%和4.55%;而西部的玛旁雍错近年间变化不大,甚至略有萎缩趋势,相比1984年也仅增长了1.31%。为研究西部地区和中东部地区出现不同变化的主要原因,通过对水位数据和气象特征因子的相关性分析,及对三地区近34年的气象资料,包括年均温度、年均降雨量、年均蒸发量等进行距平均值曲线拟合,发现中东部年均温和降雨量均呈显著增加趋势,而西部降雨量则呈微弱减少趋势。这说明近期湖面的扩张与气象资料分析的变化情况具有很好的一致性,反映遥感方法在湖泊水域变化检测方面具有较高的可用性。  相似文献   

19.
Lakes have received considerable attention as long-term sinks for organic carbon(C) at regional and global scales. Previous studies have focused on assessment and quantification of carbon sinks, and few have worked on the relationship between millennial-scale lake C sequestration, hydrological status and vegetation, which has important scientific significance in improving our understanding of lake C stocks and storage mechanisms. Here, we present a comprehensive study of pollen records, organic geochemical proxies, lake-level records, sediment accumulation rate(SAR) and organic C accumulation rate(CAR) in China since the Holocene. We also include numerical climate classification and lake-level simulations, to investigate variations of lake C sequestration, hydrological status and vegetation during the Holocene. Results indicate that the evolution of lake C accumulation showed an out-of-phase relationship with hydrological status and vegetation in China. Lake C accumulation exhibited an overall trend of increasing from the early to late Holocene in response to gradually increasing terrestrial organic matter input. However, China as a whole experienced the densest vegetation cover in the middle Holocene, corresponding to the mid-Holocene optimum of a milder and wetter climate. Optimal hydrological conditions were asynchronous in China; for example, early Holocene in Asian monsoon dominated areas, and middle Holocene in westerlies controlled regions. Our synthesis indicated that climate change was the main factor controlling the long-term variability in lake C accumulation, hydrologic conditions, as well as vegetation, and human influences were usually superimposed on the natural trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号