首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyse and invert refraction seismic travel time data, different approaches and techniques have been proposed. One common approach is to invert first‐break travel times employing local optimization approaches. However, these approaches result in a single velocity model, and it is difficult to assess the quality and to quantify uncertainties and non‐uniqueness of the found solution. To address these problems, we propose an inversion strategy relying on a global optimization approach known as particle swarm optimization. With this approach we generate an ensemble of acceptable velocity models, i.e., models explaining our data equally well. We test and evaluate our approach using synthetic seismic travel times and field data collected across a creeping hillslope in the Austrian Alps. Our synthetic study mimics a layered near‐surface environment, including a sharp velocity increase with depth and complex refractor topography. Analysing the generated ensemble of acceptable solutions using different statistical measures demonstrates that our inversion strategy is able to reconstruct the input velocity model, including reasonable, quantitative estimates of uncertainty. Our field data set is inverted, employing the same strategy, and we further compare our results with the velocity model obtained by a standard local optimization approach and the information from a nearby borehole. This comparison shows that both inversion strategies result in geologically reasonable models (in agreement with the borehole information). However, analysing the model variability of the ensemble generated using our global approach indicates that the result of the local optimization approach is part of this model ensemble. Our results show the benefit of employing a global inversion strategy to generate near‐surface velocity models from refraction seismic data sets, especially in cases where no detailed a priori information regarding subsurface structures and velocity variations is available.  相似文献   

2.
Near‐surface problem is a common challenge faced by land seismic data processing, where often, due to near‐surface anomalies, events of interest are obscured. One method to handle this challenge is near‐surface layer replacement, which is a wavefield reconstruction process based on downward wavefield extrapolation with the near‐surface velocity model and upward wavefield extrapolation with a replacement velocity model. This requires, in theory, that the original wavefield should be densely sampled. In reality, data acquisition is always sparse due to economic reasons, and as a result in the near‐surface layer replacement data interpolation should be resorted to. For datasets with near‐surface challenges, because of the complex event behaviour, a suitable interpolation scheme by itself is a challenging problem, and this, in turn, makes it difficult to carry out the near‐surface layer replacement. In this research note, we first point out that the final objective of the near‐surface layer replacement is not to obtain a newly reconstructed wavefield but to obtain a better final image. Next, based upon this finding, we propose a new thinking, interpolation‐free near‐surface layer replacement, which can handle complex datasets without any interpolation. Data volume expansion is the key idea, and with its help, the interpolation‐free near‐surface layer replacement is capable of preserving the valuable information of areas of interest in the original dataset. Two datasets, i.e., a two‐dimensional synthetic dataset and a three‐dimensional field dataset, are used to demonstrate this idea. One conclusion that can be drawn is that an attempt to interpolate data before layer replacement may deteriorate the final image after layer replacement, whereas interpolation‐free near‐surface layer replacement preserves all image details in the subsurface.  相似文献   

3.
A joint inversion of both first and refracted arrivals is applied on a seismic line, acquired onshore, in order to obtain a well‐resolved velocity field for the computation of static corrections. The use of different arrivals in the inversion involves exploiting the information derived from the different raypaths associated with each wave type, thus enhancing the reliability of the inversion. The data was gathered by Saudi Aramco in an area of the Arabian Peninsula characterized by strong lateral variations, both in topography and shallow velocity, and where therefore a well‐defined near‐surface velocity field is important. In addition to velocity, the depth distribution of the quality factor Q is computed from the tomographic inversion of the seismic‐signal frequency shift. Thus, the Q‐factor field is used to perform an inverse Q‐data filtering and improve the resolution of the final stacked section.  相似文献   

4.
Gaussian beam migration is a versatile imaging method for geologically complex land areas, which overcomes the limitation of Kirchhoff migration in imaging multiple arrivals and has no steep‐dip limits of one‐way wave‐equation migration. However, its imaging accuracy depends on the geometry of Gaussian beam that is determined by the initial parameter of dynamic ray tracing. As a result, its applications in exploration areas with strong variations in topography and near‐surface velocity are limited. Combined with the concept of Fresnel zone and the theory of wave‐field approximation in effective vicinity, we present a more robust common‐shot Fresnel beam imaging method for complex topographic land areas in this paper. Compared with the conventional Gaussian beam migration for irregular topography, our method improves the beam geometry by limiting its effective half‐width with Fresnel zone radius. Moreover, through a quadratic travel‐time correction and an amplitude correction that is based on the wave‐field approximation in effective vicinity, it gives an accurate method for plane‐wave decomposition at complex topography, which produces good imaging results in both shallow and deep zones. Trials of two typical models and its application in field data demonstrated the validity and robustness of our method.  相似文献   

5.
双复杂条件下的波动方程叠前深度偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
复杂地表条件下的地震勘探越来越被人们所关注.双复杂条件下的叠前深度偏移方法是解决复杂地表条件和复杂地质构造成像的有效手段."波场上延"法能实现由非水平观测界面开始的偏移过程,解决复杂地表对地下构造成像的影响.复杂理论模型的试算以及实际资料处理表明,"波场上延"方法较好地克服了起伏地形对地下构造成像的影响,取得了令人满意的效果,实现了波动方程基准面校正和深度成像的有机结合.  相似文献   

6.
Land seismic data quality can be severely affected by near‐surface anomalies. The imprint of a complex near‐surface can be removed by redatuming the data to a level below the surface, from where the subsurface structures are assumed to be relatively smooth. However, to derive a velocity‐depth model that explains the propagation effects of the near‐surface is a non‐trivial task. Therefore, an alternative approach has been proposed, where the redatuming operators are obtained in a data‐driven manner from the reflection event related to the datum. In the current implementation, the estimation of these redatuming operators is done in terms of traveltimes only, based on a high‐frequency approximation. The accompanying amplitudes are usually derived from a local homogeneous medium, which is obviously a simplification of reality. Such parametrization has produced encouraging results in the past but cannot completely remove the near‐surface complexities, leaving artefacts in the redatumed results. In this paper we propose a method that estimates the redatuming operators directly from the data, i.e., without using a velocity model, in a full waveform manner, such that detailed amplitude and phase variations are included. The method directly outputs the inverse propagation operators that are needed for true‐amplitude redatuming. Based on 2D synthetic data it is demonstrated that the resulting redatuming quality is improved and artefacts are reduced.  相似文献   

7.
The main objective of this work is to establish the applicability of shallow surface‐seismic traveltime tomography in basalt‐covered areas. A densely sampled ~1300‐m long surface seismic profile, acquired as part of the SeiFaBa project in 2003 ( Japsen et al. 2006 ) at Glyvursnes in the Faroe Islands, served as the basis to evaluate the performance of the tomographic method in basalt‐covered areas. The profile is centred at a ~700‐m deep well. VP, VS and density logs, a zero‐offset VSP, downhole‐geophone recordings and geological mapping in the area provided good means of control. The inversion was performed with facilities of the Wide Angle Reflection/Refraction Profiling program package ( Ditmar et al. 1999 ). We tested many inversion sequences while varying the inversion parameters. Modelled traveltimes were verified by full‐waveform modelling. Typically an inversion sequence consists in several iterations that proceed until a satisfactory solution is reached. However, in the present case with high velocity contrasts in the subsurface we obtained the best result with two iterations: first obtaining a smooth starting model with small traveltime residuals by inverting with a high smoothing constraint and then inverting with the lowest possible smoothing constraint to allow the inversion to have the full benefit of the traveltime residuals. The tomogram gives usable velocity information for the near‐surface geology in the area but fails to reproduce the expected velocity distribution of the layered basalt flows. Based on the analysis of the tomogram and geological mapping in the area, a model was defined that correctly models first arrivals from both surface seismic data and downhole‐geophone data.  相似文献   

8.
We describe an integrated method for solving the complex near‐surface problem in land seismic imaging. This solution is based on an imaging approach and is obtained without deriving a complex near‐surface velocity model. We start by obtaining from the data the kinematics of the one‐way focusing operators (i.e. time‐reversed Green's functions) that describe propagation between the acquisition surface and a chosen datum reflector using the common‐focus‐point technology. The conventional statics solutions obtained from prior information about the near surface are integrated in the initial estimates of the focusing operators. The focusing operators are updated iteratively until the imaging principle of equal traveltime is fulfilled for each subsurface gridpoint of the datum reflector. Therefore, the seismic data is left intact without any application of time shifts, which makes this method an uncommitted statics solution. The focusing operators can be used directly for wave‐equation redatuming to the respective reflector or for prestack imaging if determined for multiple reflecting boundaries. The underlying velocity model is determined by tomographic inversion of the focusing operators while also integrating any hard prior information (e.g. well information). This velocity model can be used to perform prestack depth imaging or to calculate the depth of the new datum level. We demonstrate this approach on 2D seismic data acquired in Saudi Arabia in an area characterized by rugged topography and complex near‐surface geology.  相似文献   

9.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

10.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Understanding flow structures in river confluences has largely been the product of interpretations made from measured flow velocity data. Here, we turn the attention to the investigation of the patterns of both the average and standard deviations of the micro‐topography of the water surface at an asymmetrical natural discordant confluence for different flow conditions. Water surface topography is measured using a total station to survey the position of a reflector mounted on a custom‐built raft. To limit error problems related to changes in the water level, measurements are taken and analysed by cross‐stream transects where five water surface profiles are taken before moving to the next transect. Three‐dimensional numerical simulations of the flow dynamics at the field site are used to examine predicted water surface topography for a steady‐state situation. The patterns are interpreted with respect to flow structure dynamics, visual observations of boils, and bed topography. Results indicate that coherent patterns emerge at the water surface of a discordant bed confluence for different flow conditions. The zone of stagnation and the mixing layer are characterized by super‐elevation, a lateral tilt is present at the edge of the mixing layer, and a zone of super‐elevation is present on the tributary side at the downstream junction corner. The latter seems associated with periodical upwelling and is not present in the numerical simulations that do not take into account instantaneous velocity fluctuations. Planform curvature, topographic steering related to the tributary mouth bar, and turbulent structures associated with the mixing layer all play a key role in the pattern of both the average and standard deviation of the water surface topography at confluences. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
起伏地表叠前逆时偏移理论及GPU加速技术   总被引:10,自引:4,他引:6       下载免费PDF全文
从起伏地表直接进行叠前逆时偏移是解决地表起伏大并且地下构造复杂这种双复杂结构地区成像问题的有力工具.本文给出了起伏地表直接进行叠前逆时偏移的实现过程,针对有限差分方法处理起伏地表自由边界条件的复杂性,采用了一种简化的自由边界条件,避免了大量的逻辑判断,在此基础上,采用图形处理器(Graphic Processing U...  相似文献   

13.
The mean dynamic topography of the surface of the North Atlantic is estimated using an inverse model of the ocean circulation constrained by hydro-graphic and altimetric observations. In the North Atlantic, altimetric observations have no significant impact on the topography estimate because of the limited precision of available geoid height models. They have a significant impact, however, when uncertainties in the density field are increased to simulate interpolation errors in regions where hydrographic data are scarce. This result, which moderates the conclusion drawn by Ganachaud and co-workers of no significant contribution of altimetric observations to the determination of the large-scale steady circulation, reflects the simple idea that altimetric data are most useful near the surface of the ocean and in areas where the hydrography is poorly determined. One application of the present inverse estimate of the mean dynamic topography is to compute a geoid height correction over the North Atlantic which reduces the uncertainty in the geoid height expanded to spherical harmonic 40 down to a level of about 5 cm.  相似文献   

14.
In seismic waveform inversion, non‐linearity and non‐uniqueness require appropriate strategies. We formulate four types of L2 normed misfit functionals for Laplace‐Fourier domain waveform inversion: i) subtraction of complex‐valued observed data from complex‐valued predicted data (the ‘conventional phase‐amplitude’ residual), ii) a ‘conventional phase‐only’ residual in which amplitude variations are normalized, iii) a ‘logarithmic phase‐amplitude’ residual and finally iv) a ‘logarithmic phase‐only’ residual in which the only imaginary part of the logarithmic residual is used. We evaluate these misfit functionals by using a wide‐angle field Ocean Bottom Seismograph (OBS) data set with a maximum offset of 55 km. The conventional phase‐amplitude approach is restricted in illumination and delineates only shallow velocity structures. In contrast, the other three misfit functionals retrieve detailed velocity structures with clear lithological boundaries down to the deeper part of the model. We also test the performance of additional phase‐amplitude inversions starting from the logarithmic phase‐only inversion result. The resulting velocity updates are prominent only in the high‐wavenumber components, sharpening the lithological boundaries. We argue that the discrepancies in the behaviours of the misfit functionals are primarily caused by the sensitivities of the model gradient to strong amplitude variations in the data. As the observed data amplitudes are dominated by the near‐offset traces, the conventional phase‐amplitude inversion primarily updates the shallow structures as a result. In contrast, the other three misfit functionals eliminate the strong dependence on amplitude variation naturally and enhance the depth of illumination. We further suggest that the phase‐only inversions are sufficient to obtain robust and reliable velocity structures and the amplitude information is of secondary importance in constraining subsurface velocity models.  相似文献   

15.
We developed a reverse‐time migration scheme that can image regions with rugged topography without requiring any approximations by adopting an irregular, unstructured‐grid modelling scheme. This grid, which can accurately describe surface topography and interfaces between high‐velocity‐contrast regions, is generated by Delaunay triangulation combined with the centroidal Voronoi tessellation method. The grid sizes vary according to the migration velocities, resulting in significant reduction of the number of discretized nodes compared with the number of nodes in the conventional regular‐grid scheme, particularly in the case wherein high near‐surface velocities exist. Moreover, the time sampling rate can be reduced substantially. The grid method, together with the irregular perfectly matched layer absorbing boundary condition, enables the proposed scheme to image regions of interest using curved artificial boundaries with fewer discretized nodes. We tested the proposed scheme using the 2D SEG Foothill synthetic dataset.  相似文献   

16.
Three-component seismograms at the three USC stations, PVP, GFP and DHB, have been examined. Most earthquakes, with magnitudes ranging from 1.4 to 5.0, within a period from 1985 to 1988, show evidence of shear-wave splitting. The preferred polarization of the first split-shear wave arrivals at PVP is nearly in N-S which is consistent with both regional maximum horizontal compressive stress direction and local subsurface fault strike, showing that shear-wave splitting is caused by liquid-filled cracks or fractures associated with the N-S faulting. The polarizations of first shear wave arrivals at GFP are roughly divided into two almost perpendicular directions, ENE-WSW and NNW-SSE, which are parallel or perpendicular to the strike of the geology or topography near the station. Because GFP is near the foothills of Santa Monica Mountains, the shear-wave arrivals may be disturbed by topographic irregularities and by subsurface dipping interfaces. Two examples at DHB clearly display shear-wave splitting. Their polarizations of shear wave are in the direction of N-S, which agree with the fragmentary surface and fracturing direction there. From some relatively reliable delay times, the crack densities at three stations are given, that is, 0.025 at PVP, 0.020 at GFP and 0.045 at DGB. No systematic change of shear-wave polarization is discovered in this study.  相似文献   

17.
In this study, we examine the development of topography on a thin dense layer at the base of the lower mantle. The effect of the convecting mantle above is represented as a traction acting on the upper surface of the layer. Topography on the layer boundaries is predicted by a balance of dynamic flow stress and external traction. The nature of boundary topography depends on the magnitude of the driving tractions and the density variation within the layer. If we assume that the layer density is greatest beneath areas of mantle downwelling and decreases to a minimum beneath areas of mantle upwelling (the layer is thermally coupled to the convection in the overlying mantle) then its upper boundary develops a cusp-like peak beneath the upwelling mantle. The height of this peak is potentially much greater than the layer thickness. If, however, the layers are effectively coupled by viscous shear then internal density gradients of the opposite sign may be established. In this case, we observe solutions where the layer is completely swept away beneath areas of mantle downwelling leaving steep-sided ‘islands’ of dense material. This mechanism therefore provides a possible explanation for steep-sided anomalously slow regions at the base of the mantle observed by seismic methods (e.g. beneath south Africa) or for discrete ultralow velocity zones detected at the core-mantle boundary beneath locations of surface hotspots. The magnitude of the upper boundary driving tractions compared to the density gradient within the layer is the key parameter that determines the nature of flow in, and consequently boundary topography of, the layer. The deflection of the core-mantle boundary is small compared with that of the top of the dense layer, but a change in sign of the ratio of these deflections is observed as the magnitude of the driving tractions changes relative to the magnitude of the internal density gradient. We compare seismic measurements of core-mantle boundary topography and D′′ topography with the predictions of this model in an attempt to constrain model parameters, but no clear correlation seems to exist between D′′ thickness and CMB topography.  相似文献   

18.
This study looks at the influence of surface covers on the performance of a single pumping well system. Pilot tests were conducted on a sandy soil to determine the influence of surface confinement based upon both induced vacuum and pore gas velocity design criteria. The results demonstrate how covering the surface can significantly alter the associated air flow patterns and velocity distribution. Comparison of streamline iso‐contours obtained in covered scenarios reveals that the surface seal tended to prevent air from entering the subsurface near the extraction well and force air to be drawn from a greater distance. Calculated and measured pressure differentials, for open and semi‐confined scenarios, clearly show that adding a clay layer as a surface cover increased the vacuum induced within the soil. Pore gas velocity analysis showed that when the cover clay layer was used, the zone of capture of the soil vapor extraction system increased. The radius of influence of soil vapor extraction (SVE) systems, based on the attainment of a critical vacuum or pore gas velocity, can then be increased by including a surface seal in the design of such systems. The focus of this study is limited to air flow patterns contrasted between covered and uncovered conditions and not on the nuances of a full scale remediation implementation.  相似文献   

19.
In this study we present the workflow and results of 2D frequency domain waveform tomography applied to the global‐offset seismic data acquired in central Poland along a 50‐km long profile during the GRUNDY 2003 experiment. The waveform tomography method allows full exploitation of the wide‐aperture content of these data and produces in a semi‐automatic way both the detailed P‐wave velocity model and the structural image (i.e., perturbations in respect to the starting model). Thirteen frequencies ranging from 4 to 16 Hz were inverted sequentially, gradually introducing higher wavenumbers and more details into the velocity models. Although the data were characterised by relatively large shot spacings (1.5 km), we obtained clear images both of the Mesozoic and Permian sedimentary cover. Velocity patterns indicated facies changes within the Jurassic and Zechstein strata. A high velocity layer (ca. 5500 m/s) was found near the base of Triassic (Scythian), which made the imaging of a deeper layer difficult. Nevertheless, we were able to delineate the base of the Permian (i.e., base of the Rotliegend), which was not possible to derive from conventional common‐depth‐point processing, as well as some deeper events, attributed to the Carboniferous. The sub‐Permian events formed a syn‐form which favoured our previous interpretation of a depression filled with Upper Carboniferous molasse. The validity of the waveform tomography‐derived model was confirmed by well‐log data. Forward ray‐tracing modelling and synthetic seismograms calculations provided another justification for the key structures present in the waveform tomography model.  相似文献   

20.
In this case study we consider the seismic processing of a challenging land data set from the Arabian Peninsula. It suffers from rough top‐surface topography, a strongly varying weathering layer, and complex near‐surface geology. We aim at establishing a new seismic imaging workflow, well‐suited to these specific problems of land data processing. This workflow is based on the common‐reflection‐surface stack for topography, a generalized high‐density velocity analysis and stacking process. It is applied in a non‐interactive manner and provides an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. The implementation introduced combines two different approaches to topography handling to minimize the computational effort: after initial values of the stacking parameters are determined for a smoothly curved floating datum using conventional elevation statics, the final stack and also the related residual static correction are applied to the original prestack data, considering the true source and receiver elevations without the assumption of nearly vertical rays. Finally, we extrapolate all results to a chosen planar reference level using the stacking parameters. This redatuming procedure removes the influence of the rough measurement surface and provides standardized input for interpretation, tomographic velocity model determination, and post‐stack depth migration. The methodology of the residual static correction employed and the details of its application to this data example are discussed in a separate paper in this issue. In view of the complex near‐surface conditions, the imaging workflow that is conducted, i.e. stack – residual static correction – redatuming – tomographic inversion – prestack and post‐stack depth migration, leads to a significant improvement in resolution, signal‐to‐noise ratio and reflector continuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号