首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of ?2.6 °C h?1 at sunset, whilst the maximum urban rate was ?1.2 °C h?1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (?2.0 °C h?1) and urban (?1.0 °C h?1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.  相似文献   

2.

This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)−1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)−1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  相似文献   

3.
Wang  Yuwei  Huang  Yi 《Climate Dynamics》2020,55(9-10):2343-2350

Whether the stratospheric radiative feedback amplifies the global warming remains under debate. The stratospheric water vapor (SWV), one of the primary feedbacks in the stratosphere, is argued to be an important contributor to the global warming. On the other hand, the overall stratospheric feedback, which consists of both the SWV feedback and the stratospheric temperature (ST) feedback, does not amount to a significant value. The key to reconciling these seemingly contradictory arguments is to understand the ST change. Here, we develop a method to decompose the ST change and to quantify the decomposed feedbacks. We find that the SWV feedback, which consists of a 0.04 W m−2 K−1 direct impact on the top-of-the-atmosphere radiation and 0.11 W m−2 K−1 indirect impact via ST cooling, is offset by a negative ST feedback of − 0.13 W m−2 K−1 that is radiatively driven by the tropospheric warming. This compensation results in an insignificant overall stratospheric feedback.

  相似文献   

4.
Concentrations of 222Rn at 0.1 m and 6.5 m height above ground level and 222Rn flux density were measured during nights characterized by strong cooling, light winds and clear sky conditions in the Carpathian Basin in Hungary. A very stable boundary layer (vSBL) formed on 14 nights between 15 August and 3 September 2009. On 12 nights, an estimated 72% (s.d. 20%) of 222Rn emitted from the surface since sunset was retained within the lowest 6.5 m above the ground until sunrise the following morning. On two nights an intermittent increase in wind speed at 9.4 m height was followed by a rise in temperature at 2.0 m height, indicating a larger atmospheric motion that resulted in 222Rn at 0.1 m around sunrise being the same as around the preceding sunset. It does not seem to be rare in a large continental basin for a vSBL to be nearly completely decoupled from the atmosphere above for the entire period from sunset to sunrise.  相似文献   

5.
Abstract

Radiative measurements were carried out continuously during a cruise from Australia to Antarctica during austral summer 1995/96. Both shortwave and longwave radiative fluxes were measured. Some of the results are:
  • The incoming solar radiation had a mean value of 217 W m–2; this was a relatively weak value due to the large amount of fractional cloud cover observed. The sun was, for a large part of the trip, above the horizon for 24 hours a day.

  • The reflectivity varied widely, not only as a function of sea‐ice concentration, but also as a function of ice type.

  • Snow covered pack ice gave the highest albedo values (<70%), while flooded sea ice and thin ice reflected much less (<30%).

  • For each sea‐ice type, short term observations showed a good relationship between albedo and ice concentration.

  • The albedo increased with decreasing solar elevation.

  • The net longwave radiation was negative (mean –27 W m–2); this small absolute value is due to a high amount of fractional cloud cover. There was a weak diurnal variation with a maximum loss (–33 W m–2) in the early afternoon.

  • On the average, the net radiation was positive for 17 hours, and negative for 7 hours a day. However, the duration of a positive balance depended strongly on the surface albedo.

  • For the observed albedo values, modelling results showed that the net radiation was always positive when averaged over a day. The magnitude, however, depended strongly on the surface albedo, varying by more than the factor of three.

  相似文献   

6.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   

7.
通过等熵位涡和热力学能量方程的各项诊断对2018年1月上旬我国东部一次寒潮天气过程进行分析,重点给出垂直运动在寒潮降温中的作用。结果表明:此次寒潮天气过程主要受蒙古国南部的横槽转竖影响,巴尔喀什湖东部和西伯利亚地区及其北部为引起这次寒潮的主要冷空气源地。欧亚大陆北部和极区对流层高层和平流层低层的高位涡强冷空气沿着等熵面向南向下平流,引导强冷空气侵袭我国东部。等熵位涡大值区的东侧对应上升运动区,有利于降水的产生。寒潮期间风场平流引起的850 hPa强降温区主要位于东南沿海地区,降温幅度最高可达6×10-4 K·s-1,而东北地区在整个寒潮期间冷平流强度较弱,最大降温幅度仅约为1×10-4 K·s-1。通过计算东南沿海和东北地区区域平均风场平流和垂直运动引起850 hPa温度变化,得出寒潮期间两地的温度总降幅约为1×10-4 K·s-1。东南沿海地区的寒潮主要由风场的冷平流引起,而东北地区则是由冷平流和垂直上升运动的共同作用引起。垂直方向上,东北地区冷空气能影响的高度要远高于东南沿海地区。  相似文献   

8.
 We test the climate effects of changes in the tropical ocean by imposing three different patterns of tropical SSTs in ice age general circulation model simulations that include water source tracers and water isotope tracers. The continental air temperature and hydrological cycle response in these simulations is substantial and should be directly comparable to the paleoclimatic record. With tropical cooling imposed, there is a strong temperature response in mid- to high-latitudes resulting from changes in sea ice and disturbance of the planetary waves; the results suggest that tropical/subtropical ocean cooling leads to significant dynamical and radiative feedbacks that might amplify ice age cycles. The isotopes in precipitation generally follow the temperature response at higher latitudes, but regional δ18O/air temperature scaling factors differ greatly among the experiments. In low-latitudes, continental surface temperatures decrease congruently with the adjacent SSTs in the cooling experiments. Assuming CLIMAP SSTs, 18O/16O ratios in low-latitude precipitation show no change from modern values. However, the experiments with additional cooling of SSTs produce much lower tropical continental δ18O values, and these low values result primarily from an enhanced recycling of continental moisture (as marine evaporation is reduced). The water isotopes are especially sensitive to continental aridity, suggesting that they represent an effective tracer of the extent of tropical cooling and drying. Only one of the tropical cooling simulations produces generalized low-latitude aridity. These results demonstrate that the geographic pattern of cooling is most critical for promoting much drier continents, and they underscore the need for accurate reconstructions of SST gradients in the ice age ocean. Received: 26 July 1999 / Accepted: 10 July 2000  相似文献   

9.
Seasonal variations of the spectra of wind speed and air temperature in the mesoscale frequency range from 1.3 × 10-4 to 1.5 × 10-3 Hz (10 min to 2 h periods) have been studied through observations over land for one year. Spectrographs [time series of isopleths of spectral densities, f · S(f) vs f] of wind speed and air temperature contain occasional peaks that are attributed to short-lived mesoscale atmospheric activity with narrow frequency bands. Significant spectral peaks of wind speed were found in 19% of the total observations in winter, and in 15–16% in the other seasons; for air temperature, they occured in 12% of observations in autumn, and in 16–19% in the other seasons. The peaks most often occurred in the period range from 30 min to 1 h; most had durations less than 24 h. Mesoscale fluctuations of wind speed and air temperature were highly correlated, and in most cases, phase differences were 90–180 ° with air temperature leading wind speed. Significant spectral peaks of wind speed often occurred during northerly seasonal cold winds in winter, and accompanied tropical and/or mid-latitude cyclones in the other seasons. When the peaks occurred, wind speed was usually relatively high and the atmospheric surface layer was unstable.  相似文献   

10.
11.

We study the spatio-temporal variability of Atmospheric Rivers (ARs) and associated integrated water vapor and atmospheric parameters over the Euro-Atlantic region using long-term reanalysis datasets. Winds, temperature, and specific humidity at different pressure levels during 1979–2018 are used to study the water vapor transport integrated between 1000 and 300 hPa (IVT300) in mapping ARs. The intensity of ARs in the North Atlantic has been increasing in recent times (2009–2018) with large decadal variability and poleward shift (~ 5° towards the North) in landfall during 1999–2018. Though different reanalysis datasets show similar spatial patterns of IVT300 in mapping ARs, bias in specific humidity and wind components led to IVT300 mean bias of 50 kg m−1 s−1 in different reanalysis products compared to ERA5. The magnitude of winds and specific humidity in the lower atmosphere (below 750 hPa) dominates the total column water vapor and intensity of ARs in the North Atlantic. Reanalysis datasets in the central North Atlantic show an IVT300 standard deviation of 200 kg m−1 s−1 which is around 33% of the ARs climatology (~ 600 kg m−1 s−1). Though ARs have a higher frequency of landfalling over Western Europe in winter half-year, the intensity of IVT300 in winter ARs is 3% lower than the annual mean. The lower frequency of ARs in the summer half-year shows 3% higher IVT300 than the annual mean. While ARs in the North Atlantic show a strong decadal change in frequency and path, the impact of the North Atlantic Oscillation (NAO) and Scandinavian blocking on the location of landfall of ARs are significant. Furthermore, there is a strong latitudinal dependence of the source of moisture flux in the open ocean, contributing to the formation and strengthening ARs.

  相似文献   

12.
Changes in labour productivity feed through directly to national income. An external shock, like climate change, which may substantially reduce the productivity of workers is therefore a macroeconomic concern. The biophysical impact of higher temperatures on human performance is well documented. Less well understood are the wider effects of higher temperatures on the aggregate productivity of modern, diversified economies, where economic output is produced in contexts ranging from outdoor agriculture to work in air-conditioned buildings. Working conditions are at least to some extent the result of societal choices, which means that the labour productivity effects of heat can be alleviated through careful adaptation. A range of technical, regulatory/infrastructural and behavioural options are available to individuals, businesses and governments. The importance of local contexts prevents a general ranking of the available measures, but many appear cost-effective. Promising options include the optimization of working hours and passive cooling mechanisms. Climate-smart urban planning and adjustments to building design are most suitable to respond to high base temperature, while air conditioning can respond flexibly to short temperature peaks if there is sufficient cheap, reliable and clean electricity.

Key policy insights

  • The effect of heat stress on labour productivity is a key economic impact of climate change, which could affect national output and workers’ income.

  • Effective adaptation options exist, such as shifting working hours and cool roofs, but they require policy intervention and forward planning.

  • Strategic interventions, such as climate-smart municipal design, are as important as reactive or project-level adaptations.

  • Adaptation solutions to heat stress are highly context specific and need to be assessed accordingly. For example, shifting working hours could be an effective way of reducing the effect of peak temperatures, but only if there is sufficient flexibility in working patterns.

  相似文献   

13.
Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.  相似文献   

14.

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  相似文献   

15.
Two aspects of convection over oceans are discussed and the following conclusions are derived from theoretical considerations.
  1. The air layer over the sea will usually convect even when the water surface is ten degrees or more colder than the initial air temperature.
  2. An inversion at stratus cloud tops is created by the stratus, and is not a necessary preexisting condition. Such inversions persist after subsidence evaporates the cloud.
  3. Radiation heat exchange does not play an essential role in stratus formation or maintenance, and can either heat or cool the cloud.
  4. Dry air convection does not erode inversions at the top of the convecting layer. Examples of soundings are discussed.
  5. Fogs are most likely to form at sea where the water is coolest, and need no radiation effects to initiate cooling, or a boost from patches of warmer water, to begin convection.
  6. Both stratus cloud growth, and the evaporation of clouds by cloud top entrainment, readjust the vertical structure of the air to leave a constant wet-bulb potential temperature with height.
These conclusions are supported by, firstly, a convective model which has been developed and which shows that vapor-driven convection over the ocean will proceed with zero or negative heat fluxes, at rates which saturate the lowest layer of the atmosphere in a few hours to altitudes of many tens of meters. Secondly, the availability of condensed moisture at the top of the surface layer cools the warmer entrained overlying dry air parcels so that when they descend they are no warmer than the sea surface temperature, and this induces downward moving plumes. This occurs if the wet-bulb potential temperature of the overlying air is less than the sea surface temperature, even if it is ten degrees C, or more, warmer in actual temperature.  相似文献   

16.
Abstract

The morphology and time evolution of a winter storm is studied using radar data taken during the Canadian Atlantic Storms Program (CASP). The vertical motions that generate the snow are derived from reflectivity measurements. The study reveals a banded structure in the precipitation pattern with ascending and descending air associated with the bands. Vertical velocities averaged over the radar‐covered area reach values close to 1 m s‐1 . The region of large‐scale uplifting moves horizontally at about half the horizontal air velocity. A persistent precipitation pattern results from the continuously renewed air within the uplifting region.  相似文献   

17.
The formation of cold air drainage flows in a shallow gully is studied during CASES-99 (Cooperative Atmosphere-Surface Exchange Study). Fast and slow response wind and temperature measurements were obtained on an instrumented 10-m tower located in the gully and from a network of thermistors and two-dimensional sonic anemometers, situated across the gully. Gully flow formed on clear nights even with significant synoptic flow. Large variations in surface temperature developed within an hour after sunset and in situ cooling was the dominant factor in wind sheltered locations. The depth of the drainage flow and the height of the down-gully wind speed maximum were found to be largest when the external wind speed above the gully flow is less than 2 m s-1. The shallow drainage current is restricted to a depth of a few metres, and is deepest when the stratification is stronger and the external flow is weaker. During the night the drainage flow breaks down, sometimes on several occasions, due to intermittent turbulence and downward fluxes of heat and momentum. The near surface temperature may increase by 6 ° C in less than 30 min due to the vertical convergence of downward heat flux. The mixing events are related to acceleration of the flow above the gully flow and decreased Richardson number. These warming events also lead to warming of the near surface soil and reduction of the upward soil heat flux. To examine the relative importance of different physical mechanisms that could contribute to the rapid warming, and to characterize the turbulence generated during the intermittent turbulent periods, the sensible heat budget is analyzed and the behaviour of different turbulent parameters is discussed.  相似文献   

18.
Summary The development of temperature inversion and wind structure in Colorado's Eagle Valley was investigated by means of tethered balloon ascents made during the late aftermoon and evening of 15 October 1978. Strong cooling of the valley atmosphere began after 1630 MST. The mean rate of energy loss from a 1 m-thick cross section of the valley atmosphere during the 4 h period of observations was 1.23 MW. The zone of maximum rate of energy loss propagated upwards from the valley floor after 1630 MST and was accompanied by distinctive structures in both the temperature and wind fields. Transport of cold air in the downslope flows over the sidewalls is thought to play a major role in causing the rapid growth (250 m/h) in temperature insersion depth and the strong cooling of the atmosphere in the early stages of the evening transition period.
Der Aufbau einer Temperaturinversion im Eagle Valley von Colorado
Zusammenfassung Die Entwicklung von Temperaturinversion und Windstruktur im Eagle Valley von Colorado wurde mittels Fesselballonaufstiegen untersucht. Diese Ballonaufstiege wurden am späten Nachmittag und Abend des 15. Oktober 1978 durchgeführt. Nach 1630 MST setzte eine starke Abkühlung der Talatmosphäre ein. Die mittlere Rate des Energieverlustes während des vierstündigen Beobachtungszeitraumes von einem 1 m starken Querschnitt der Talatmosphäre war 1.23 MW. Die Zone der maximalen Energieverlustrate breitete sich nach 1630 MST vom Talboden nach oben aus, wobei sie von charakteristischen Temperatur- und Windfeldstrukturen begleitet wurde. Man nimmt and, daß der Transport von kalter Luft in den Abhangströmungen über die Seitenwände bei der Verursachung des raschen Anwachsens (250 m/h) der Mächtigkeit der Temperaturinversion und der starken Abkühlung der Atmosphäre in den frühen Stadien der abendlichen Übergangsperiode eine bedeutende Rolle spielt.


With 5 Figures

Contribution no. PNL-SA-13718. A slightly modified version of a paper presented at the American Meteorological Society's Second Conference on Mountain Meteorology at Steamboat Springs, Colorado, in November 1981.  相似文献   

19.
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Analysis of meteorological data collected during the 1985 and 1987 Amazon Boundary Layer Experiments (ABLE 2A and 2B) indicates the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3–7 m s-1 between 300 and 1000 m increase to 10–15m s-1 shortly after sunset. The wind speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. The night-time inversion extends up to 300 m with strong vertical shear of the horizontal wind below the inversion top and uniformly strong horizontal winds above the inversion top. Frictional decoupling of the air above the inversion from the rough forest below, however, is responsible for only part of the observed increase. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. We suspect that stronger low-level winds are pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.  相似文献   

20.
Summary ?Microclimatological data obtained during a field experiment in the nongrowing winter period were used to study the microclimatologically stable night conditions of a 200 × 150 m miscanthus (Miscanthus cv. giganteus) stand and compared to open field conditions. The microclimatological pattern within the miscanthus canopy was characterized by long-wave radiative cooling of the plant stand and by an established temperature inversion within the canopy at calm nights. The results show that there are significant differences in air temperature and energy balance components between the open field and the miscanthus field during calm and clear nights. In general, net radiation difference during the cold and calm nights was relatively constant and about 20 W m−2 less negative in miscanthus (because of lower surface temperatures) than at the open field. Air temperature differences also remained fairly constant and were up to 3 °C lower than at the open field (at the height of 1 m). Through thermal inversion cold air accumulated in the lower parts of the canopy as shown by the vertical air temperature profiles. They showed a greater amplitude within the diurnal cycle in the miscanthus stand than in the open field. Through the onset of wind, temperature profiles changed rapidly and differences diminished. Vertical katabatic air drainage into the canopy layers was estimated indirectly by using the energy balance approach. It was calculated from the significant energy balance closure gap and showed a mean air exchange rate of up to 22 m3 m−2 h−1, related to a stand volume of 1 m2 area and 4 m height, during the mostly calm and clear nights, depending on the canopy net radiation and turbulent heat exchange forced by slight wind spells. Quantitative uncertainties in calculated cold air drainage which are introduced by the measurement method and certain assumptions in the calculations, were considered in a sensitivity analysis. In spite of these uncertainties evidence of katabatic cold air flow is given. Received July 29, 1999; revised June 11, 2001; accepted March 14, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号