首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
贵州高原起伏地形下日照时间的时空分布   总被引:1,自引:0,他引:1       下载免费PDF全文
由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响, 实际起伏地形下的日照时间与水平面上的日照时间有一定差异。该文建立了一种基于数字高程模型 (DEM) 的起伏地形下日照时间的模拟方法, 计算了起伏地形下贵州高原100 m×100 m分辨率日照时间的时空分布。结果表明:坡度、坡向、地形遮蔽对日照时间的影响较大, 实际起伏地形下日照时间的空间分布具有明显地域特征。1月太阳高度角较低, 坡度、坡向的作用非常明显, 地形遮蔽面积较大, 日照时间的空间差异较多, 日照时间为16~142 h, 最大值约为最小值9倍; 7月太阳高度角较高, 地形遮蔽面积相对较小, 日照时间的空间差异相对较少, 日照时间为133~210 h, 最大值为最小值1.6倍, 但由于7月日照时间相对较多, 局地地形对日照时间影响仍明显。4月、10月日照时间及其变化幅度介于1月和7月之间。  相似文献   

2.
在前人研究的基础上,对以前计算平均日最低气温的模型进行了一些改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下太阳总辐射的影响,基于数字高程模型(DEM)数据,研制了复杂地形下海拔高度、太阳总辐射、日照百分率为参数的月平均日最低气温的分布式模型。应用100 m×100m分辨率的DEM数据、1960—2000年贵州省及周边102个气象站常规气象要素观测资料以及NOAA-AVHRR观测资料、10个气象站的太阳辐射量资料,计算了贵州高原复杂地形下各月及年平均日最低气温空间分布。结果表明:(1)局地地形因子对贵州地区月平均日最低气温的影响较大,月平均日最低气温纬向分布不明显。贵州高原复杂地形下年平均日最低气温大部分地区介于7.5~12.4℃之间,1月平均日最低气温大部分介于-0.6~4.1℃之间,7月平均日最低气温大部分介于15.6~21.3℃之间。(2)月平均日最低气温随海拔高度的增加而降低。南坡随坡度的增大而升高;北坡随坡度的增大而降低。在坡向影响上,1~5月、10~12月偏北坡月平均日最低气温偏低,偏南坡月平均日最低气温偏高;7~8月因太阳高度较高,因此出现相反的情况,北坡高于南坡。  相似文献   

3.
武文辉  袁淑杰  邱新法 《贵州气象》2007,31(2):F0003-F0003
该文建立一种基于数字高程模型(DEM)的起伏地形下可照时间模拟方法;在此基础上得到起伏地形下贵州高原100m×100m分辨率的可照时间的时空分布。结果表明:地形遮蔽对可照时间的影响较大,要大于纬度的影响。由于坡度坡向等局地地形因子的影响,使起伏地形下的可照时间空间差异明显。贵州高原起伏地形下1月可照时间为155.0~320.3h,1月太阳高度角较低,地形遮蔽面积较大,可照时间的空间分布具有明显的地域分布特征。7月可照时间为337.7~423.7h,7月太阳高度角较高,地形遮蔽面积较小,地域差异比1月小得多,呈明显的纬向分布。贵州高原起伏地形下年可照时间为2692.7~4367.5h,最大值是最小值的1.6倍,且纬向分布并不明显。  相似文献   

4.
起伏地形下浙江省散射辐射时空分异规律模拟   总被引:2,自引:0,他引:2  
结合影响起伏地形下太阳散射辐射的天空因素与地面因素,通过基于数字高程模型(DEM)数据的起伏地形下天文辐射模型和地形开阔度模型,综合考虑地面因素对散射辐射的影响;基于常规地面气象站观测资料建立的水平面散射辐射模型,考虑天空因素对散射辐射的影响;建立了起伏地形下浙江省散射辐射分布式估算模型;逐月计算了浙江省散射辐射(100m×100m)的空间分布。结果表明:散射分量分布与地理地形因子、季风影响、大气透明程度有关,由高纬向低纬逐渐增加;季节分布特点为,夏季〉春季〉秋季〉冬季;坡度、坡向对散射辐射的分布影响小,但辐射值与开阔度呈正相关,各季辐射最大值分布在开阔度大处,最小值在开阔度最小处,不同季节有所伸缩。计算结果可以为气候变化和环境资源研究提供基础数据。  相似文献   

5.
基于数字高程模型(DEM)数据,在充分考虑了地形因子对太阳直接辐射和散射辐射的影响后,实际计算了起伏地形下黑河流域的太阳辐射。在忽略地表和大气之间的多次反射后,地表太阳总辐射计为三项:按起伏坡面上实际入射角考虑的太阳直接辐射、经过下垫面天空视角因子订正的坡面天空散射辐射和考虑周围地形反射效应的附加辐射。计算结果表明:局地地形起伏对太阳直接辐射、总辐射空间分布的影响非常强烈,使得复杂地形下不同坡向间总辐射和直接辐射平均计算差额十分显著,且太阳天顶角从较小增大至中等大小时,这两种平均计算差额均加大一倍多;在较小和中等大小太阳天顶角下,不同坡向间总辐射平均计算差额,均较相同条件下直接辐射平均计算差额为小,这是因为总辐射还包括了天空漫射和邻近地形反射辐射因子,这两个因子和坡面上太阳入射方位的变化共同影响地表入射太阳辐射;起伏地形主要使得太阳辐射在局地区域内背阴、向阳坡向间发生显著的重新分配。因此,在复杂地形地区进行太阳辐射计算时必须考虑地形的影响。  相似文献   

6.
姜创业  孙娴  王娟敏  王式功 《高原气象》2010,29(5):1230-1237
基于1∶25×104数字高程模型数据,依据起伏地形下天文辐射分布式模型算法,研究了陕西山地天文辐射空间分布规律,详细分析了地形因子对天文辐射的影响规律;同时,从不同的DEM分辨率和不同地貌类型两个方面探讨了天文辐射的空间尺度效应。结果表明:陕西天文辐射总量随着纬度的升高呈由南向北降低的趋势;局地地形因子对天文辐射的影响随季节、纬度、坡度及坡向等因素而变;同时山地天文辐射的空间尺度效应在地势起伏较大的山区和高原地区表现尤为明显。  相似文献   

7.
以起伏地形下天文辐射的分布模型为基础,借助地理信息系统(GIS)处理数据,将深圳市1∶250,000DEM数据作为地形的综合反映,模拟计算了起伏地形下(坡度、坡向和地形遮蔽)深圳市天文辐射,分析了起伏地形下深圳市天文辐射的分布规律,完成了深圳市100m×100m分辨率的各月及全年的天文辐射的空间制图。结果表明:对于局部地形起伏引起的天文辐射的变化,秋、冬季最为显著,向阳坡和背阴坡的极值差异较大,这和太阳高度角随着季节变化而冬半年相对较低、夏半年相对较高有关。坡度对天文辐射的影响在冬半年较大,随着坡度的增大,辐射差值增大的幅度呈递减趋势。  相似文献   

8.
起伏地形下我国太阳散射辐射分布式模拟   总被引:6,自引:0,他引:6  
基于1km×1km分辨率的数字高程模型(DEM)数据,考虑了地形因子对太阳散射辐射的影响,改进了开阔度的计算模型,确定了我国气候平均情况下月散射系数的空间分布,实现了实际起伏地形下我国太阳散射辐射的分布式模拟,计算了我国范围内1km×1km分辨率1-12月气候平均太阳散射辐射的空间分布.结果表明:局地地形对太阳散射辐射空间分布的影响比较明显;模拟结果可靠,可进行大数据量处理,适用于遥感图像处理、地理信息系统等数据处理平台.  相似文献   

9.
起伏地形下四川省太阳直接辐射时空分布特征   总被引:2,自引:0,他引:2  
利用四川省159个地面常规气象观测站及周边9个太阳辐射站观测资料,基于数字高程模型(DEM)数据,考虑坡度、坡向和地形遮蔽作用的影响,研制起伏地形下太阳直接辐射分布式模型。结合四川省90 m×90 m分辨率的DEM数据,分析起伏地形下四川省太阳直接辐射空间分布特征和时间变化趋势。结果表明:(1)四川省太阳直接辐射纬向分布不明显,受海拔高度、日照百分率、局地地形影响较大;(2)四川省太阳直接辐射年总量东部盆地较低,1 300.0 MJ·m-2,川西高原及攀西地区较大,在1 900.0~3 486.9 MJ·m-2之间;(3)四川省太阳直接辐射时间变化明显,川东盆地太阳直接辐射1 000.0 MJ·m-2的地区有增加趋势,川西地区2 800.0 MJ·m-2的区域在减小,四川省宜宾、都江堰、南充、马尔康太阳直接辐射年总量、1月、7月气候倾向率均0。  相似文献   

10.
利用河南省及周边145个气象站1961-2000年常规气象观测资料和河南省1:25万DEM数据,充分考虑起伏地形下太阳散射辐射的天空因素与地面因素后,基于分布式开阔度模型和天文辐射模型,实现了起伏地形下河南省太阳散射辐射的分布式模拟.计算了100m×100 m分辨率下河南省1-12月气候平均太阳散射辐射及多年平均年散射辐射总量的空间分布.结果表明:在充分考虑经验系数的时空分布特征后,模拟精度有了进一步提高.与郑州站的观测资料对比验证表明,模拟精度较高,年平均绝对误差为3.06 MJ·m-2,年平均相对误差为1.67%;局地地形对太阳散射辐射的影响比较明显;通过个例年验证对模型性能和模拟结果进行考察,年平均相对误差不足11%.综上表明模型的时空模拟性能良好.  相似文献   

11.
基于数字高程模型(DEM)模拟计算了大理州山地日照时间的时空分布,结果显示,除了日照百分率外,坡度、坡向和地形之间的相互遮蔽对日照时间的分布有很大的影响。冬季太阳高度角较小,地形遮蔽对日照时间的影响很大,夏季相对较小。遮蔽系数4月最大,12月最小。一年中的任意时刻随着坡度的增加日照时间减少。坡向对日照时间的影响有很强的...  相似文献   

12.
可照时间受地形的影响及其精细的空间分布   总被引:5,自引:0,他引:5  
设计了起伏地形下可照时间分布式计算模型,讨论了不同纬度的坡度、坡向、遮蔽等地形因子对可照时间的影响。结果表明:可照时间的纬向分布特征明显;同一纬度,同一坡向的可照时间随着坡度的增加而减小;坡向对可照时间的影响复杂,不同坡向上的可照时间随季节和坡度变化;在太阳高度角较低的冬季,地形遮蔽对可照时间的影响显著,可明显地影响可照时间的空间分布,清楚表现出可照时间的非地带性。同时绘制了1:100万我国实际地形下精细的可照时间空间分布。  相似文献   

13.
利用四川省气象站常规观测数据,1:25万数字高程(DEM)数据,考虑坡度、坡向等地形因子建立气候经验统计模型和分布式模型,分别计算未考虑地形因子和起伏地形下的四川省太阳总辐射时空分布情况并进行分析。结果表明:两种模拟结果在四川省总辐射分布上趋势大致相同;分布式模拟结果所得总辐射结果范围更大,总辐射结果范围为1800~7200MJ/m2,而气候经验统计模型结果仅为3100~6280MJ/m2;经部分站点2012年总辐射实测值检验,结合地形因子采用分布式模拟的方法比单纯使用经验系数和气象参数模拟的气候学方法误差均值小0.39%。考虑了复杂地区的分布式模拟结果,比气候学拟合方法结果更为细致,更有利于查看局地结果,这对实际应用中太阳能资源的开发、电厂规模的选址和布设、电机型号的安装更能提供参考价值。四川省北部阿坝州、西部甘孜州和南部凉山州及攀西地区太阳能资源较为丰富,利于进行太阳能资源开发,交通不便地区可通过安装小型分布式发电设施,合理利用太阳能资源。  相似文献   

14.
起伏地形下我国太阳直接辐射的分布式模拟   总被引:2,自引:1,他引:2  
运用数据集群技术,建立了我国不同时空尺度直接透射率的估算模式,对比分析了不同模式的拟合精度。基于1km×1km分辨率的数字高程模型(DEM)数据,全面考虑了地形因子对太阳直接辐射的影响,实现了实际起伏地形下我国太阳直接辐射的分布式模拟,计算了我国范围内1km×1km分辨率1—12月气候平均太阳直接辐射的空间分布。结果表明:局地地形对太阳直接辐射空间分布的影响非常强烈,尤其是在太阳高度角较低的冬季和秋季;模拟结果可靠,可进行大数据量处理,适用于遥感图像处理、地理信息系统等数据处理平台。  相似文献   

15.
复杂地形下山西高原太阳潜在总辐射时空分布特征   总被引:2,自引:0,他引:2  
针对太阳辐射在不同区域及地形地貌条件下的差异,借鉴国内外太阳辐射最新研究成果,考虑地形和大气衰减因子及各种可能的影响因子,基于数字高程模型提取坡度、坡向以及地形遮蔽因子,建立了山西高原太阳潜在总辐射计算模型,进而利用纵跨山西南北的3个辐射观测站的5年逐日太阳总辐射晴空观测资料对模型计算结果进行了检验分析,检验结果表明模型适用可行.利用该模型计算分析了山西高原太阳潜在总辐射的时空变化以及地形因子影响下的变化特征,可望为区域小气候变化以及区域植被、农作物所应用的小气候指标提供重要的基础条件.  相似文献   

16.
提出一种以气象站点观测资料为基础,用G IS技术建立山地平均气温分布模型的方法。通过数字高程模型(DEM),获取地形数据,建立山地天文辐射模型。考虑海拔高度、地形等影响气温空间分布因子,建立山地气温分布模型。  相似文献   

17.
以考虑地形遮蔽作用的实际起伏地形下可照时间分布式计算模型为基础,采用1:25万高分辨率数字高程模型(DEM)数据,计算了100m×100m分辨率的重庆市月可照时间以及年可照时间的空间分布,并分析了起伏地形下重庆市可照时间的逐月变化规律。结果表明:重庆市可照时间以6、7月份最高,2月份最低,全市年可照时间为2830h;地形因子对起伏地形下重庆市可照时间的影响程度具有随季节变化的特性;局地地形对可照时间的影响程度随季节而变,在冬半年,太阳高度角较低的季节,局地地形的影响较为显著。  相似文献   

18.
郑飒飒  杨佑洪  刘志  刘晓璐 《气象科技》2018,46(6):1280-1286
利用四川省数字高程模型(DEM)和1970—2014年四川省143个气象站点45年冰雹资料,使用相关分析、逐步回归、数字地形分析和分区统计等方法,研究了四川省冰雹分布与地形高程、坡度、坡向、经纬度、地形起伏度及地形切割深度的关系。研究结果表明:四川省冰雹分布有明显的地理分布特征,地形高程、经度、地形起伏度及西北偏西坡向等地形因子是四川省冰雹分布的主要影响因子。建立冰雹与主要地形影响因子的回归方程,模拟四川省冰雹空间分布,结果显示模拟值与实际值分布趋势一致,但模拟数据整体偏小。  相似文献   

19.
基于数字地形模型的山区太阳辐射的时空分布模拟   总被引:2,自引:2,他引:0  
张秀英  冯学智 《高原气象》2006,25(1):123-127
在数字地形模型(DTM)的基础上,利用地理信息系统软件ArcGIS确定阴影、提供的地图代数语言功能,模拟了甘肃定西安家沟小流域任意时段内天文辐射的空间分布。该模型借助于ArcGIS的地形分析功能,解决了常规方法不能解决的地形遮蔽对天文辐射的影响。该模型是一个物理模型,对天文辐射能的时空分布可做出较精确描述,提供在常规条件下的重要参数。时空分布分析表明:地形对天文辐射的影响很大,尤其是坡向的影响;天文辐射随着季节变化很大,从3月底开始直到6月上旬一直处于上升阶段,然后下降;地形对天文辐射的影响程度随着季节不同有所不同,但是没有表现出明显的规律。  相似文献   

20.
基于DEM的广东山地高分辨率太阳辐射模拟研究   总被引:1,自引:0,他引:1  
对已有太阳总辐射模型进行改进,并利用MODIS产品取代地表反照率经验公式,在更小积分步长内进行计算,开发了复杂地形下太阳总辐射高分辨率模拟模型。应用1 km分辨率的数字高程模型(DEM)数据以及常规气象资料,对广东2个辐射站的太阳总辐射进行验证。结果表明:(1) 所建立的分布式太阳辐射模拟模型能准确模拟广东省太阳总辐射分布状况,模拟值与实测值吻合较好;(2) 研究区域四季辐射中的夏季辐射最高,秋季次之,冬季最低,年均太阳总辐射为2 893~4 655 J/(m2?s),平均值为4 167 J/(m2?s);(3) 大范围区域而言,广东夏、秋、冬季太阳总辐射的纬向分布十分显著,但从局地区域看,地形是影响太阳总辐射的主导因子。太阳总辐射是各种作物最基本也是最重要的能量来源,在小网格尺度上进行的精细化太阳总辐射计算可为多种作物的布局和种植规划提供重要的基础数据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号