首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Paleomagnetic data from 46 sites (674 specimens) of the Westcoast Crystalline Gneiss Complex on the west coast of Vancouver Island using AF and thermal demagnetization methods yields a high blocking temperature WCB component (> 560°C) with a pole at 335°W, 66°N (δp = 4°, δm = 6°) and a lower coercivity WCA component ( 25 mT, < 500°C) with a pole at 52°W, 79°N (δp = 7°, δm = 8°). Further thermal demagnetization data from 24 sites in the Jurassic Island Intrusions also defines two high blocking temperature components. The IIA component pole is at 59°W, 79°N (δp = 7°, δm = 8°) and IIB pole at 130°W, 73°N (δp = 12°, δm = 13°). Combined with previous data from the Karmutsen Basalts and mid-Tertiary units on Vancouver Island and from the adjacent Coast Plutonic Complex, the geotectonic motions are examined for the Vancouver Island segment of the Wrangellian Subterrane of composite Terrane II of the Cordillera. The simplest hypothesis invokes relatively uniform translation for Terrane II from Upper Triassic to Eocene time producing 39° ± 6° of northward motion relative to the North American craton, combined with 40° of clockwise rotation during the Lower Tertiary.  相似文献   

2.
Oxygen self diffusion rates were determined in quartz samples exchanged with18O-enriched CO2 between 745 and 900°C and various pressures, and the diffusion profiles were measured using an ion microprobe. The activation energy (Q) and preexponential factor (D0) at P(CO2) = P(tot) = 100 bar, for diffusion parallel to the c-axis are 159 ( ± 13) kJ/g atom and 2.10 (+0.75/ −0.55) × 10−8 cm2/s. This rate is approximately 100 times slower than that obtained from hydrothermal experiments and 100 times faster than a previous 1-bar quartz-O2 exchange experiment. The oxygen diffusion rate measured at 0.6 bar, 888°C, and at 900°C in vacuum is in agreement with the previous 1-bar exchange experiments with18O2. The effect of higher CO2 pressures is small. At 900°C, the diffusion rate exchanged with CO2 is = 2.35 × 10−15 cm2/s at 100 bar, 2.24 × 10−15 cm2/s at 3.45 kbar and 8.13 × 10−15 cm2/s at 7.2 kbar.There is probably a diffusing species, other than oxygen, that enhances the oxygen diffusion rate in these quartz-CO2 systems, relative to that occurring at very low pressures or in a vacuum. The effect of this diffusing species, however, is not as strong as that associated with H2O. Preserved oxygen isotope fractionations between coexisting minerals in a slowly cooled, high-grade metamorphic terrane will vary depending upon whether a water-rich phase was present or not. Closure temperatures will be approximately 100°C higher in rocks where no water-rich phase was present during cooling. The measured fractionations between coexisting minerals in metamorphic rocks may potentially be used as a sensor of water presence during retrogression.  相似文献   

3.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

4.
Results are presented on scubadiving investigations carried out on thermal manifestations in the area of Panarea (Aeolian Islands). The area investigated falls inside a caldera which extends from the main island to the group of islets located to the northeast. The distribution of the gaseous manifestations is regulated by the NE-SW, NW-SE and N-S regional tectonic directrices, through which the more recent basic magma intruded, giving rise to dikes and pillow lavas. fO2-temperature relation of the gases sampled in the investigated area was calculated to be: logfO2 = 11−24,593/T which indicates that a buffering mechanism acted on the gases as they cooled down during their ascent. The high 3He/4He ratio (6 × 10−6) and the δ13C = −3.2%. (PDB), suggest the presence of a magmatic component in the gas feeding the investigated manifestations. The above relations and the almost constant high He/N2 ratio suggest that all the fumaroles are fed by the same deep hot fluids. On the basis of both the chemical characters of the fluids and the geothermo-barometric data, a deep geothermal body, having a temperature of about 240°C, is recognized. Two other shallower thermal aquifers, with a temperature of 170–210°C, are identified. A circulation pattern of the geothermal fluids is also proposed. On the basis of calculations regarding the convective energy released by the geothermal system of Panarea, and the magmatic mass responsible for the positive gravimetric anomaly of the area, it was estimated that the last volcanic activity took place less then 10,000 years ago.  相似文献   

5.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

6.
Garnets in an amphibolite-facies metasediment from Sulitjelma, North Norway yield precise and concordant SmNd, UPb and RbSr ages that relate directly to the pressure (P) and temperature (T) conditions of mineral growth. Differential mineral reaction between graphitic and non-graphitic layers within this sample preserves a record of theP-T and time (t) history experienced during Barrovian regional metamorphism. Garnets in graphitic layers grew during prograde metamorphism at462 ± 16°C and5.2 ± 0.5 kbar under conditions of lowaH2O, and yield indistinguishable147Sm143Nd and238U206Pb ages of434.1 ± 1.2 Ma and433.9 ± 1.0 Ma, respectively. In contrast, garnet growth in adjacent graphite-free layers did not occur untilP-T conditions of540 ± 18°C and8.0 ± 1.0 kbar were attained, with continued growth in response to minor heating and decompression with final matrix equilibration at544 ± 16°C and7.0 ± 1.0 kbar. The inclusion-free garnet rims in this assemblage record indistinguishable147Sm143Nd and238U206Pb ages of424.6 ± 1.2 Ma and423.4± 1.7 Ma, respectively. These results provide precise estimates for average heating and burial rates during prograde metamorphism of 8.6−4.4+7.5°C Ma−1 and 0.8−0.5+0.9 km Ma−1, respectively. Rb and Sr exchange between coexisting silicates in the graphite-free assemblage continued for some 37 Ma after the “peak” of metamorphism, and require an average cooling rate of about 4.0°C Ma−1 during uplift. These results illustrate a clear relationship between reaction history and the timing of mineral growth and provide definitive constraints on the rates of thermal and tectonic processes accompanying regional metamorphism.  相似文献   

7.
The F2-layer peak density, NmF2, and peak altitude, hmF2, which were observed by 12 ionospheric sounders during the 20 September 1964 geomagnetically quiet time period at solar minimum are compared with those calculated by the three-dimensional time-dependent theoretical model of the Earth's low and middle latitude ionosphere and plasmasphere. The modeled NmF2 are also compared with those measured during the geomagnetically quiet time periods of 12–15, 18–21, and 26 September 1964 to take into account observed day-to-day ionospheric variability. Major features of the data are reproduced by the model if the corrected HWM90 neutral wind is used. The changes in NmF2 due to the zonal E×B plasma drift are found to be less than 20% in the daytime low latitude ionosphere. The model, which does not take into account the zonal E×B plasma drift, underestimates night-time NmF2 up to the maximum factor of 2 at low geomagnetic latitudes. The night-time increase of NmF2 caused by the zonal E×B plasma drift is less pronounced at −20° and 20° geomagnetic latitudes in comparison with that between −10° and 10° geomagnetic latitude. The longitude dependence of the calculated night-time low latitude influence of the zonal E×B plasma drift on NmF2 is explained in terms of the longitudinal asymmetry in B (the eccentric magnetic dipole is displaced from the Earth's center and the Earth's eccentric tilted magnetic dipole moment is inclined with respect to the Earth's rotational axis), and the variations of the wind induced plasma drift and the meridional E×B plasma drift in geomagnetic longitude. The difference between the hmF2 values calculated by including the effect of zonal E×B drift and that obtained when it is excluded does not exceed 19 km in the low latitude ionosphere. Over the geomagnetic equator the zonal E×B plasma drift produces the maximum increase in the electron density by a factor of 1.06–1.48 and 1.05–1.30 at 700 and 1000 km altitude, respectively, and this increase is not significant above about 1500 km. Changes in the vertical electron content, VEC, caused by the zonal E×B plasma do not exceed 16% during the day, while the value of the night-time VEC is increased up to a factor of 1.4 due to this drift. The maximum effects of the zonal E×B plasma drift on the night-time electron density derived from the model results corresponding to solar minimum and maximum are quite comparable.  相似文献   

8.
This paper presents new results of centrifuge model tests exploring the behavior of rocking shallow foundations embedded in dry sand, which provides a variety of factors of safety for vertical bearing. The results of slow (quasi‐static) cyclic tests of rocking shear walls and dynamic shaking tests of single‐column rocking bridge models are presented. The moment–rotation and settlement–rotation relationships of rocking footings are investigated. Concrete pads were placed in the ground soil to support some models with the objective of reducing the settlement induced by rocking. The behavior of rocking foundation was shown to be sensitive to the geometric factor of safety with respect to bearing failure, Lf/Lc, where Lf was the footing length, and the Lc was the critical soil‐footing contact length that would be required to support pure axial loading. Settlements were shown to be small if Lf/Lc was reasonably large. Placement of concrete pads under the edges of the footing was shown to be a promising approach to reduce settlements resulting from rocking, if settlements were deemed to be excessive and also had impacts on the energy dissipation and rocking moment capacity. A general discussion of the tradeoffs between energy dissipation and re‐centering of rocking foundations and other devices is included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The use of regional attenuation in computing the local magnitude, ML, from strong motion data gathered at distances less than 100 km may lead to systematic underestimates approaching 0·5 magnitude units (Trifunac & Herak, Soil Dynamics and Earthquake Engineering, 1992, 18, 229-41). The use of the attenuation law Att(Δ), for example, with synthetic estimates of Wood-Anderson seismometer response, during the Loma Preita earthquake, leads to estimates of ML which agree with the surface wave and moment magnitudes, and which are essentially distance-independent.  相似文献   

10.
First-arrival traveltimes from a multi-offset vertical seismic profile (VSP) were used to estimate velocity anisotropy in the presence of a vertical velocity gradient. A numerical model consisting of two layers with vertical velocity gradients of 3.1 and 1.2 s−1, respectively, and global anisotropy parameters of =0.12±0.02 and δ=0.30±0.06 yielded first-arrival traveltimes that matched the observed traveltimes well. Shallow receivers were found to be crucial for constraining the vertical velocity field and for determining the parameters of anisotropy at depth.  相似文献   

11.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

12.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

13.
Equilibrium reversals of Fe2+Mg distribution between the M1 and M2 sites of an orthopyroxene from the Johnstown meteorite were achieved at several temperatures between 700 and 1000°C. One single crystal was used for the whole thermal treatment and for collecting all the X-ray data after quenching. The intracrystalline ion exchange for the bulk chemical composition: (Mg1.453Fe0.441Cr0.024Ca0.054Mn0.015Fe0.005Ti0.003Al0.005)(Si1.960Al0.040)O6 is given by: ln KD = −3027(±39)/T(K) + 0.872(±0.013)> where KD is the distribution coefficient for the reaction: FeM22+ + MgM1 = MgM2 + FeM12+.A transmission electron microscopy (TEM) study of part of the crystal showed the presence of very thin augite lamellae and Guinier-Preston zones indicating a relatively rapid cooling of the host rock at temperatures close to 1000°C. The new temperature scale yields a relatively high quenching temperature of 379 (±8)°C for the pyroxene which appears consistent with a rapid cooling (estimated few degrees per hundred years) of a magmatic cumulate excavated by an impact on its parental body.  相似文献   

14.
The precise knowledge of the initial 26Al/27Al ratio [(26Al/27Al)0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium–aluminum-rich inclusions (CAIs) as the “time zero” age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al–26Mg fossil isochron with an (26Al/27Al)0 of (5.23 ± 0.13) × 10− 5. Internal mineral isochrons obtained for three of these CAIs (A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with (26Al/27Al)0 = (4.96 ± 0.25) × 10− 5, anchored to our precisely determined absolute 207Pb–206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the “canonical” (26Al/27Al)0 of 5 × 10− 5 for the early Solar System. The uncertainty in (26Al/27Al)0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al–26Mg and U–Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the “supra-canonical” 26Al/27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/27Al ratio in the CV CAIs may have resulted from post-crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS.The radiogenic 208Pb/206Pb ratio obtained as a by-product from the Pb–Pb age dating is used to estimate time-integrated 232Th/238U ratio (κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.  相似文献   

15.
An approximate analytical solution is presented for torsional vibrations of footings partially embedded into a semi-infinite medium or a stratum. Simple formulas derived for pure torsional motion make it possible to apply a correction for the effect of embedment to the known solutions of surface footings. The solution completes an approach to the analysis of all modes of footing vibrations, including the coupled modes. The approach to coupled modes is illustrated by the solution of coupled response involving horizontal translation, rocking and torsion. Formulas are presented for stiffness and damping coefficients that can be used in the analysis of embedded footings or structures supported by such footings Field experiments were conducted with concrete footings featuring circular, square and rectangular bases and variable embedment depths. The experimental results were compared with theoretical predictions of pure torsional vibrations.  相似文献   

16.
Crustal neon: a striking uniformity   总被引:1,自引:0,他引:1  
By combining data from a diverse suite of crustal fluid samples representing a broad geographical distribution, we have identified a well-defined nucleogenic (crustal) neon component. The neon is produced from (α, n) and (n, α) nuclear interactions involving nuclei of O, Mg, and F [1]. In the limiting case of 20Ne/22Ne = 0, the composition is: 21Ne/22Ne = 0.47 ± 0.01 and 21Ne/4He = (0.46 ± 0.08) × 10−7. A crustal O/F ratio of 110 (atomic) calculated from the 21Ne/22Ne ratio is 4–10 times less than the average crustal O/F ratio. The discrepancy can be accounted for by an enhanced O/F ratio within the 10–40 μm range of the U-Th-generated α-particles.  相似文献   

17.
Seismic hazard maps of the Los Angeles metropolitan area are illustrated for normalized peak strain and for 50 years of exposure. The strain estimates are based on scaling in terms of peak ground velocity. The proportionality factor is the phase velocity with which the wave energy is propagating. A simplified seismicity model is used in which all earthquakes occur on faults represented by buried lines and in one zone of diffused seismicity. Poissonian model of earthquake occurrence is assumed. The same model was used in the 1980's to illustrate a method for microzoning of the same area for response spectral amplitudes. Maps of logarithms of normalized peak strain, cεmax, are presented for probabilities of at least one exceedance p = 0·99, 0·9, 0·5, 0·1 and 0·01. These can be used to construct site specific probability distribution functions of the normalized peak strain, cεmax. Such maps are useful for design of new and for retrofit of existing structures, sensitive to strain and differential ground motions (bridges, tunnels, pipelines, etc.).  相似文献   

18.
We assessed leaf breakdown of five native riparian species from Brazilian Cerrado (Myrcia guyanensis, Ocotea sp., Miconia chartacea, Protium brasiliense, and Protium heptaphyllum), incubated in single and mixed species packs in two headwater streams with different physico-chemical properties in the Espinhaço Mountain range (Southeastern Brazil). Leaves were placed in plastic litter bags (15 cm×20 cm, 10 mm mesh size) and the experiments were carried out during the dry seasons of 2003 and 2004. Leaf nitrogen and phosphorus contents were similar in all species, but polyphenolic contents were different (P<0.001). M. guyanensis showed higher polyphenolics content (8.48% g−1 dry mass) and leaf toughness. Individually, higher breakdown rates were found in M. guyanensis at Indaiá stream (k=0.0063±0.0005 d−1) and in Ocotea sp. at Garcia stream (k=0.0088±0.0006 d−1). However, P. brasiliense and P. heptaphyllum showed lower breakdown rates at Indaiá and Garcia streams (Indaiá: k=0.0020±0.0002 and 0.0019±0.0001 d−1; Garcia: k=0.0042±0.0001 and 0.0040±0.0002 d−1). Single and mixed breakdown processes of each species were not statistically different on both streams. However, all species showed higher breakdown rates at Garcia stream (P<0.01). These results suggest that leaf breakdown is not altered when litter benthic patches are composed by a mixture of species in the same proportions that they occur on riparian leaf falls.  相似文献   

19.
Measurements of five cosmogenic32Si vertical profiles in Atlantic waters (27°N to 60°S) are presented. The amounts of dissolved SiO2 extracted range from 2 to 54 g; the amounts of water from which SiO2 was extracted range between 540 kg and 270, 000 kg. In additon, SiO2 recovered from four surface particulate composites (64°N to 61°S) were also analyzed for32Si.32Si measurements were made by milking and counting the daughter activity, 32P. The net32P activities range from 0.7 to 6.8 cph; typical errors in measurements of the32P activities are 20–30%.The32Si concentrations vary from 0.6 dpm/106 kg of water in the North Atlantic surface waters to 235 dpm/106 kg at 400 m depth in the circumpolar waters. The vertical profiles of32Si at the five Atlantic stations approximately follow the Si profiles but the depth gradients are different. This would be expected also considering the in-situ release mechanisms due to dissolution and advection/diffusion from the bottom waters. Except for the circumpolar station 89, where the Si and32Si profiles show the effect of marked vertical mixing (nearly depth independent profiles), the profiles show the following features: (1) specific activities of32Si (32Si/SiO2 ratios) are lowest at intermediate depths, and (2) on an average the surface specific activities are higher, by 2–4 times, than the bottom water values. These data are consistent with generation of the highest specific activity32Si waters at the surface, where Si concentrations are lowest and precipitation adds cosmogenic32Si scavenged from the troposphere. Rapid removal of biogenic silica to the water-sediment interface, without much dissolution during transit, leads to the second regime of high32Si specific activities.The32Si inventories in the water column in the latitude belt 27°N-27°S are in the range (1–1.4) × 10−2 dpm32Si/cm2, which is consistent with the expected fallout of cosmogenic32Si. However, the32Si column inventories south of 40°S are higher by a factor of 5–7, whereas the corresponding Si inventories increase by only a factor of 3. This excess32Si in the Southern Ocean cannot be explained by direct fallout from the stratosphere or by melting of Antarctic snow and ice. Instead, this excess is maintained primarily by the southward deep-water transport of32Si dissolved from sinking particulates.  相似文献   

20.
Electron microprobe and reflected light microscopic examinations confirm the presence of composite grains of ferrian ilmenite with Xilm = 0.53 and titanomagnetite with Xusp = 0.13 in a dacite with self-reversed TRM. A parallel TRM component associated with titanomagnetite and a reversed component associated with self-reversing ferrian ilmenite are the principal NRM components. A subordinate, parallel component is associated with ferrian ilmenite which is not magnetically coupled to an “χ-phase”. The natural self-reversing properties are mainly a consequence of the dacite's high quenching temperature, calculated at 862–864°C using the Fe—Ti oxide geothermometer, and are most consistent with the self-reversal mechanism proposed by Lawson et al. [9].The conduction of thermal demagnetization and TRM induction tests in air had a much greater effect on the Fe—Ti oxides than did natural cooling, and resulted in significant oxidation with the consequent modification of some magnetic properties and the formation of another reversed TRM component. The subdivision of titanomagnetite grains by oxidation along fractures decreased its effective grain size and caused an apparent increase in its magnetic intensity, in addition to a slight increase in its resistance to alternating field demagnetization. The χ-phase associated with the reversed NRM component, with 0.42 > Xilm 0.31, became Fe-enriched during the earlier stages of heat treatment. It is suggested that after heating at 600°C for two hours or more, this χ-phase exsolves as titanohematite with Xilm < 0.33. The ferrian ilmenite host is consequently enriched in Ti, and another χ-phase much closer in composition to the host generates a reversed TRM component with Tb < 200°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号