首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The Lachlan Orogen,like many other orogenic belts,has undergone paradigm shifts from geosynclinal to plate-tectonic theory of evolution over the past 40 years. Initial plate-tectonic interpretations were based on lithologic associations and recognition of key plate-tectonic elements such as andesites and palaeo-subduction complexes. Understanding and knowledge of modern plate settings led to the application of actualistic models and the development of palaeogeographical reconstructions, commonly using a non-palinspastic base. Igneous petrology and geochemistry led to characterisation of granite types into ‘I’ and ‘S’, the delineation of granite basement terranes, and to non-mobilistic tectonic scenarios involving plumes as a heat source to drive crustal melting and lithospheric deformation. More recently, measurements of isotopic tracers (Nd, Sr, Pb) and U–Pb SHRIMP age determinations on inherited zircons from granitoids and detrital zircons from sedimentary successions led to the development of multiple component mixing models to explain granite geochemistry. These have focused tectonic arguments for magma genesis again more on plate interactions. The recognition of fault zones in the turbidites, their polydeformed character and their thin-skinned nature, as well as belts of distinct tectonic vergence has led to a major reassessment of tectonic development. Other geochemical studies on Cambrian metavolcanic belts showed that the basement was partly backarc basin- and forearc basin-type oceanic crust. The application of 40Ar–39Ar geochronology and thermochronology on slates,schist and granitoids has better constrained the timing of deformation and plutonism,and illite crystallinity and bo mica spacing studies on slates have better defined the background metamorphic conditions in the low-grade parts. The Lachlan deformation pattern involves three thrust systems that constitute the western Lachlan Orogen, central Lachlan Orogen and eastern Lachlan Orogen. The faults in the western Lachlan Orogen show a generalised east-younging (450–395 Ma), which probably relates to imbrication and rock uplift of the sediment wedge, because detailed analyses show that the décollement system is as old in the east as it is in the west. Overall, deformation in the eastern Lachlan Orogen is younger (400–380 Ma), apart from the Narooma Accretionary Complex (ca 445 Ma). Preservation of extensional basins and evidence for basin inversion are largely restricted to the central and eastern parts of the Lachlan Orogen. The presence of dismembered ophiolite slivers along some major fault zones, as well as the recognition of relict blueschist metamorphism and serpentinite-matrix mélanges requires an oceanic setting involving oceanic underthrusting (subduction) for the western Lachlan Orogen and central Lachlan Orogen for parts of their history. Inhibited by deep weathering and a general lack of exposure, the recent application of geophysical techniques including gravity, aeromagnetic imaging and deep crustal seismic reflection profiling has led to greater recognition of structural elements through the subcrop, a better delineation of their lateral continuity, and a better understanding of the crustal-scale architecture of the orogen. The Lachlan Orogen clearly represents a class of orogen, distinct from the Alps, Canadian Rockies and Appalachians, and is an excellent example of a Palaeozoic accretionary orogen.  相似文献   

2.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

3.
Emplacement of an upper crustal, leading imbricate-fan thrust belt in the Lachlan Fold Belt of eastern Australia was accomplished along a 0.5–1 km thick zone of heterogeneously deformed, low grade phyllonite in pelitic rock. Continuous recrystallization and neocrystallization of mica in a zone of transposition layering has provided a weak zone at the base of a 100 km wide × 150 km exposed length × 10 km thick thrust system. The basal deformation zone is characterized by a low-moderately dipping, strong-intense transposition foliation enclosing elongate fault-bounded slices (up to 20 km long × 5 km wide in map view) of disrupted Cambrian metavolcanics and Upper Ordovician black shales and slates. These are derived from a structurally lower zone of duplexing or from the overturned limbs of anticlinorial structures. The detachment zone is a 10–15 km wide zone of intense deformation showing a transition from open, upright folds with weak cleavage to inclined, tightisoclinal folds with strong axial surface cleavage. The intensity of minor faults also increases into the zone. Leading imbricate fan thrust belts show maximum deformation effects along the basal detachment which forms the frontal or leading fault. The leading imbricate geometry is due to emplacement of the basal detachment zone up the lowest and last formed imbricate thrust. Movement is along a relatively ductile, low viscosity ‘layer’ at the base where strain softening occurs with development of transposition layering. This enables confined ‘flow’ along the basal zone with transport and emplacement of the fold system and duplex zone to higher structural levels. Reaction-enhanced ductility and grain boundary sliding may be important deformation mechanisms responsible for this flow. Localized polydeformation, marked by mesofolds and crenulation cleavage, reflects the interaction between thrust sheets and the movement on faults.  相似文献   

4.
Low‐T, intermediate to high‐P assemblages indicative of the prehnite–pumpellyite, greenschist and blueschist facies are preserved in mélange zones and slivers of oceanic crust within two major fault zones of the turbidite‐dominated Lachlan Orogen. In one of these fault zones (Governor Fault Zone), blueschists occur as Franciscan‐like blocks in a serpentinite/talc matrix that is interleaved with phyllites and slates, and structurally overlain by a fault slice or duplex of predominantly pillow basalt, chert, and turbidite. The blueschist metavolcanics are interpreted to have formed at < 450 °C and at a depth of approximately 21–27 km. The presence of blue amphibole in the blocks, rinds and matrix indicate that the metavolcanics were emplaced in the matrix prior to blueschist metamorphism. Blocks and matrix were partially exhumed, interleaved with tectonic slices of phyllite and slate, and subsequently folded at about 10–12 km depth, inferred from bo values of the dominant mica fabric in the phyllites and slates. Metamorphic P–T is highest in the structurally lowest slice (mélange zone) and lowest in the overlying ophiolitic fault slice, suggestive of an accretionary burial metamorphic pattern formed by underplating of the mélange. In the other fault zone (Heathcote Fault Zone), blueschists transitional to greenschist facies are interpreted to have formed at < 450 °C and at a depth of approximately 15–21 km. They occur as blocks in serpentinite/talc‐matrix mélange and are also associated with fault slices of oceanic crust. Textural and mineralogical evidence suggests that the protoliths for the blueschists in both fault zones were boninitic pillow lavas. The metamorphic facies and patterns, and the structural and lithological associations, can be interpreted in terms of disruption of oceanic crust and overlying sediments during subduction, and formation of serpentinite‐matrix mélange overprinted by blueschist metamorphism either prior to or during underplating of the mélange and duplex formation. The presence of blueschist metavolcanics indicate that these processes occurred at considerable depth. These interpretations have implications for the evolution of large‐scale fault zones in noncollisional, convergent oceanic settings.  相似文献   

5.
Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ~2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ~2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.  相似文献   

6.
A substantial database of 40Ar/39Ar ages, collected recently from micas in western and central Victoria, has been used in several recent papers as support for continuous, diachronous deformation across western and central Victoria lasting through much of the Early Palaeozoic. This paper reviews these ages, together with field evidence collected over the last ten years. It provides an alternative interpretation, that mica growth and overgrowth in western Victoria was not continuous but episodic, occurring at ca 455 Ma, 440 Ma and 425 Ma, with little or no mica growth recorded from between these times. These ages have been obtained from mica in regional cleavage, crenulation cleavage and in quartz veins, and from across the entire width of the Stawell and Bendigo structural zones of western Victoria. A sharp change in mica ages occurs at the Mt William Fault, east of which no mica growth older than about 380 Ma is recorded. Several ages used in support for diachronous deformation are not related to deformation: an 40Ar/39Ar age of 417 Ma from Chewton is from the aureole of a Devonian granite, and an age of 410 Ma from the Melbourne Zone is shown to contain a substantial amount of inherited mica. If it is accepted that mica growth can be used to date deformation, then the 40Ar/39Ar ages indicate episodic, not continuous, deformation in western Victoria (Stawell and Bendigo Zones). The sharp decrease in the deformation age in the Melbourne Zone, east of the Mt William Fault, agrees well with field evidence that shows continuous sedimentation in the Melbourne Zone in the period (Ordovician to mid‐Early Devonian) during which the Stawell and Bendigo zones were undergoing deformation. Some correlation also exists between the 40Ar/39Ar ages from western Victoria and well‐constrained deformational events in the eastern Lachlan Orogen. The pattern of deformation has important corollaries in any model that attempts to understand what drives the deformation. While plate convergence must be the ultimate driving force, the pattern is quite inconsistent with deformation of a crust that was being drawn progressively into subduction zones, as proposed in recently published models. Rather, the observed pattern suggests that deformation happened in several very brief events, probably on semi‐rigid plates.  相似文献   

7.
New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shun, central China. The finegrained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet,omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism,are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes.Two late-stages of widely developed, sequential ductile deformations D3 and D4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D3 fabrics are best preserved in the Suhe tract of low post-D3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D4 structures are attributed to the main episode of ductile extension (D^24) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the northductile shearing (D^24) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic(250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinline UHP metamorphic belt formed durin~ the Early Paleozoic (500-400Ma).  相似文献   

8.
秦岭造山带内宁陕断裂带构造演化及其意义   总被引:6,自引:1,他引:5  
宁陕断裂是秦岭造山带内部发育的一条近东西向区域性断裂。研究表明,宁陕断裂运动学性质为左行走滑,变形早期为韧性变形,晚期叠加脆性变形。早期变形形成的同变形变质矿物的40Ar-39Ar定年结果显示,变形时代为169~162Ma左右,属于秦岭造山带碰撞后陆内变形阶段产物。宁陕左行走滑断裂的存在暗示着在中晚侏罗世之前,现今南秦岭构造带很可能分属于两个不同的构造单元。宁陕断裂北西侧具有古老变质基底,并有大量早中生代花岗岩体侵入;南东侧只发育中上元古宙浅变质火山-沉积组合,发育晚元古宙-早古生代基性侵入岩脉及一些碱性岩脉。中晚侏罗世-早白垩世期间,围绕着扬子地块西缘和北缘,发生过左行走滑变形,这可能与扬子地块在这个时期的顺时针旋转相关。  相似文献   

9.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

10.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

11.
A 2‐D crustal velocity model has been derived from a 1997 364 km north‐south wide‐angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west‐northwest to east‐southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P‐wave velocity (6.24–6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5–15 km depth is juxtaposed against Ordovician craton‐derived turbidites by an inferred south‐dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near‐surface P‐wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid‐Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P‐wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal‐scale P‐wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.  相似文献   

12.
Abstract

The upper Cambrian Yancannia Formation is a small and isolated basement exposure situated in the southern Thomson Orogen, northwestern New South Wales. Understanding the geology of the Yancannia Formation is important, as it offers a rare glimpse of the composition and structure of the mostly covered basement rocks of the southern Thomson Orogen. It consists of deformed fine-grained, lithic-rich, turbiditic metasediments, suggesting deposition in a proximal, low-energy deep-marine environment. A 497 ± 13 Ma U–Pb detrital zircon date provides its maximum depositional age, the same as previously published for a tuff horizon in a correlative unit. Analysis of sedimentological, geochronological and geophysical data confirms the Yancannia Formation belongs to the Warratta Group. The Warratta Group exhibits many similarities to the Teltawongee Group in the adjacent Delamerian Orogen, including similar provenance, sedimentology and deep-water turbiditic depositional environment. Additionally, there is no sedimentological evidence for deposition of the Warratta Group following the ca 500 Ma Delamerian Orogeny, which suggests that the Warratta Group is syn-Delamerian. However, no geochronological or structural evidence for Delamerian orogenesis was observed in the Warratta Group, suggesting that the group was either unaffected by Delamerian orogenesis, or that no conclusive record remains. The provenance signature of the Warratta Group also bears strong similarities with the upper Cambrian Stawell Zone Saint Arnaud Group in the western Lachlan Orogen. Units east of Yancannia have similar provenance signatures to the Lower Ordovician Girilambone Group of the Lachlan Orogen, suggesting equivalents exist in the southern Thomson Orogen. These are likely to be the Thomson beds, deposited in a deep-marine setting outboard of the Delamerian continental margin. Structural analysis from a ~10 km, semi-continuous, across-strike section indicates a major, kilometre-scale, upright, shallow northwest-trending, doubly plunging anticline dominates the Yancannia region. This D1 structure was associated with tight-to-isoclinal folding, penetrative cleavage and abundant quartz veining of probable Benambran age. Later dextral transpressional deformation (D2) produced a sporadic, weak cleavage and dextral faulting, possibly of Bindian age. Major south-directed thrusting (D3) on the adjacent Olepoloko Fault occurred in the early Carboniferous and appears to pre-date a later deformation event (D4), which was associated with kink folding.  相似文献   

13.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

14.
The Wyangala Batholith, in the Lachlan Fold Belt of New South Wales, is pre‐tectonic with respect to the deformation that caused the foliation in the granite, and was emplaced during a major thermal event, perhaps associated with dextral shearing, during the Late Silurian to Early Devonian Bowning Orogeny. This followed the first episode of folding in the enclosing Ordovician country rocks. Intrusion was facilitated by upward displacement of fault blocks, with local stoping. Weak magmatic flow fabrics are present. After crystallization of the granite, a swarm of mafic dykes intruded both the granite and country rock, possibly being derived from the same tectonic regime responsible for emplacement of the Wyangala Batholith. A contact aureole surrounding the granite contains cordierite‐biotite and cordierite‐andalusite assemblages. Slaty cleavage produced in the first deformation was largely obliterated by recrystallization in the contact aureole.

Postdating granite emplacement and basic dyke intrusion, a second regional deformation was accompanied by regional metamorphism ranging from lower greenschist to albite‐epidote‐amphibolite facies, and produced tectonic foliations, termed S and C, in the granite, and a foliation, S2, in the country rocks. Contact metamorphic rocks underwent retrogressive regional metamorphism at this time. S formed under east‐west shortening and vertical extension, concurrently with S2. C surfaces probably formed concurrently with S and indicate reverse fault motion on west‐dipping ductile shear surfaces. The second deformation may be related to Devonian or Early Carboniferous movement on the Copperhannia Thrust east of the Wyangala Batholith.  相似文献   

15.
In this paper we present the current geological knowledge and the results of new geological and structural investigations in the Cho Oyu-Sagarmatha-Makalu region (Eastern Nepal and Southern Tibet).The tectonic setting of the middle and upper part of the Higher Himalayan Crystallines (HHC) and Tibetan Sedimentary Sequence is characterized by the presence of pervasive compressive tectonics with south-verging folds and shear zones overprinted by extensional tectonics.In the middle and upper part of the HHC two systems of folds (F2a and F2b) have been recognized, affecting the S1 high-grade schistosity causing kilometer-scale upright antiforms and synforms. The limbs of these upright folds are affected by F3 collapse folds, top-to-SE extensional shear zones and extensional crenulation cleavages linked to extensional tectonics.The uppermost portion of the HHC and the lower part of the Tibetan Sedimentary Sequence is affected by two major extensional fault zones with a top-to NE direction of movement. The lower ductile extensional shear zone brings into contact the North Col Formation with the high grade gneisses and micaschists of the HHC. It is regarded as the main feature of the South Tibetan Detachment System. The upper low-angle fault zone is characterized by ductile/brittle deformation and thin levels of cataclasites and brings the slightly metamorphosed Ordovician limestones into contact with the North Col Formation. Extensional tectonics continued with the formation of E–W trending high angle normal faults.Three metamorphic stages of Himalayan age are recognized in the HHC of the Sagarmatha-Makalu region. The first stage (M1) is eclogitic as documented by granulitized eclogites collected at the top of the Main Central Thrust Zone in the Kharta region of Southern Tibet. The second event recorded in the Kharta eclogites (M2) was granulitic, with medium P (0.55–0.65 GPa) and high T (750–770°C), and was followed by recrystallization in the amphibolite facies of low pressure and high T (M3). The first event has also been recorded in the overlying Barun Gneiss, where M1 was followed by decompression under increasing T, the M2 event, producing the dominant mineral assemblage (garnet-sillimanite-biotite), and then by strong decompression under high T, with growth of andalusite, cordierite and green spinel. Also, changes in phase compatibilities suggest an increase in metamorphic temperature (T) coupled with a decrease in metamorphic pressure (P) in some of the thrust sheets of the MCT Zone.A telescoped metamorphic zonation ranging from the sillimanite to the staurolite and biotite zones is characteristic of the ductile extensional shear zone which is the lower part of the STDS in the Sagarmatha region. Evidence for decompression under increasing temperature, anatexis and leucogranite emplacement accompanying extension in the HHC was found throughout the whole ductile shear zone, particularly in metapelites both below and above the Makalu leucogranite and in micaschists of the staurolite zone.  相似文献   

16.
核溪变质核杂岩构造位于华南的武夷山脉南段。该变质核杂岩构造由顺层塑性流变的内核、分划性右行斜落韧性变形的中间性、脆韧性右行滑落剪切变形的具薄皮构造特征的盖层组成“三层结构”。其间均为不同构造层的剥离断层(带)分划,各剥离层的上盘在下滑的同时右行走滑的特征也很明显,是一个具右行旋卷特征的变质核杂岩构造。该变质核杂岩构造于加里东期发育雏形,强烈隆升并定位于印支期,对燕山期及其以后的构造发展仍有一个控制作用。  相似文献   

17.
《Gondwana Research》2014,25(3-4):1051-1066
The Early Palaeozoic Ross–Delamerian orogenic belt is considered to have formed as an active margin facing the palaeo-Pacific Ocean with some island arc collisions, as in Tasmania (Australia) and Northern Victoria Land (Antarctica), followed by terminal deformation and cessation of active convergence. On the Cambrian eastern margin of Australia adjacent to the Delamerian Fold Belt, island arc and backarc basin crust was formed and is now preserved in the Lachlan Fold Belt and is consistent with a spatial link between the Delamerian and Lachlan orogens. The Delamerian–Lachlan connection is tested with new zircon data. Metamorphic zircons from a basic eclogite sample from the Franklin Metamorphic Complex in the Tyennan region of central Tasmania have rare earth element signatures showing that eclogite metamorphism occurred at ~ 510 Ma, consistent with island arc–passive margin collision during the Delamerian(− Tyennan) Orogeny. U–Pb ages of detrital zircons have been determined from two samples of Ordovician sandstones in the Lachlan Fold Belt at Melville Point (south coast of New South Wales) and the Howqua River (western Tabberabbera Zone of eastern Victoria). These rocks were chosen because they are the first major clastic influx at the base of the Ordovician ‘Bengal-fan’ scale turbidite pile. The samples show the same prominent peaks as previously found elsewhere (600–500 Ma Pacific-Gondwana and the 1300–1000 Ma Grenville–Gondwana signatures) reflecting supercontinent formation. We highlight the presence of ~ 500 Ma non-rounded, simple zircons indicating clastic input most likely from igneous rocks formed during the Delamerian and Ross Orogenies. We consider that the most probable source of the Ordovician turbidites was in East Antarctica adjacent to the Ross Orogen rather than reflecting long distance transport from the Transgondwanan Supermountain (i.e. East African Orogen). Together with other provenance indicators such as detrital mica ages, this is a confirmation of the Delamerian–Lachlan connection.  相似文献   

18.
Terrane sutures in the Maine Appalachians and adjacent areas are recognized as melange dominated, deformed accretionary prisms of Ordovician age, and as a broad synmetamorphic transcurrent fault zone of probable Late Silurian-Early Devonian age. Although the accretionary prisms are associated with present day aeromagnetic and Bouguer gravity anomalies, they are probably not associated with present day crustal penetrating boundaries. The geology of the accretionary prisms indicates subduction-obduction dominated regimes during which (1) the Gander and Boundary Mountain (Dunnage) terranes amalgamated and (2) the composite Boundary Mountain-Gander terrane accreted to the Laurentian margin. The Penobscottian orogeny produced and deformed the older of the two accretionary prisms. This accretionary prism indicates that the Penobscottian was a continuous or perhaps diachronous event which spanned the late Cambrian to early Late Ordovician. The younger accretionary prism was produced and deformed during the Taconian orogeny during late Middle to early Late Ordovician. Initial deformation of this accretionary prism may have overlapped the waning stages of the Penobscottian. Portions of the Taconian arc locally overlie the Penobscottian accretionary prism. A synmetamorphic fault zone lies within Precambrian(?) to Ordovician(?) bimodal metavolcanic and metapelitic rocks assigned here to the Avalon terrane. This zone is several kilometres wide and is interpreted to be the postsubduction suture between the Avalon and Gander terranes, and may, in part, represent a fossil transform fault system. The fault zone contains phyllonites as well as shear zones which generally record dextral motion. The phyllonites were previously interpreted as a stratigraphic unit, whereas the shear zones span or are contained within mappable compositional units. Formation of and movement along these phyllonites and shear zones ceased before the intrusion of Early Devonian plutons. Not all faults in south-western Maine are related to the suture. Younger dip and/or strike-slip and thrust faults are approximately parallel to, or may lie within, the older shear zones and they complicate the recognition of the older faults.  相似文献   

19.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   

20.
In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid–rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号