首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polarization analysis of multi-component seismic data is used in both exploration seismology and earthquake seismology. In single-station polarization processing, it is generally assumed that any noise present in the window of analysis is incoherent, i.e., does not correlate between components. This assumption is often violated in practice because several overlapping seismic events may be present in the data. The additional arrival(s) to that of interest can be viewed as coherent noise. This paper quantifies the error because of coherent noise interference. We first give a general theoretical analysis of the problem. A simple mathematical wavelet is then used to obtain a closed-form solution to the principal direction estimated for a transient incident signal superposed with a time-shifted, unequal amplitude version of itself, arriving at an arbitrary angle to the first wavelet. The effects of relative amplitude, arrival angle, and the time delay of the two wavelets on directional estimates are investigated. Even for small differences in angle of arrival, there may be significant error (>10°) in the azimuth estimate.  相似文献   

2.
Static correction computations require knowledge of the refracted traveltimes. Zero-phase wavelet sources cannot be picked reliably when incoherent picking techniques are used. Assuming a complex convolutional model for Vibroseis, a coherent picking technique based on the matched filter is described. In order to match the filter to the first arrival wavelet an adaptive algorithm is used. This allows the filter to change both with shot and offset so that all the properties of matched filtering such as improvement of S/N and resolution can be exploited. Incoherent picking is used before coherent picking to improve the convergence of adaptive picking.  相似文献   

3.
Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.  相似文献   

4.
本文首先分析了地震波在黏弹介质的传播规律,基于黏弹介质地震波动方程总结了时变子波振幅谱和相位谱的关系,从而得出结论,准确估计子波相位谱初值和不同时刻的子波振幅谱是实现时变子波准确提取的必要条件.在此基础上,针对传统方法限制子波振幅谱形态且受限于分段平稳假设的问题,提出了一种利用EMD(Empirical Mode Decomposition)和子波振幅谱与相位谱关系的时变子波提取方法,根据子波对数振幅谱光滑连续而反射系数对数振幅谱振荡剧烈的特点,采用EMD方法将不同时刻地震记录的对数振幅谱分解为一组具有不同振荡尺度的模态分量,通过滤除振荡剧烈分量、重构光滑连续分量提取时变子波振幅谱;再应用子波振幅谱和相位谱的关系提取时变子波相位谱,将分别提取的振幅谱和相位谱逐点进行合成,最终实现时变子波的准确提取.本文方法不需要求取Q值,适用于变Q值的情况,具有良好的抗噪性能.数值仿真和叠后实际资料处理结果表明,相比传统的分段提取方法,利用本文方法提取的时变子波准确度更高,研究成果对提高地震资料分辨率具有重要意义.  相似文献   

5.
Over the past decade the typical size of airborne electromagnetic data sets has been growing rapidly, along with an emerging need for highly accurate modelling. One‐dimensional approximate inversions or data transform techniques have previously been employed for very large‐scale studies of quasi‐layered settings but these techniques fail to provide the consistent accuracy needed by many modern applications such as aquifer and geological mapping, uranium exploration, oil sands and integrated modelling. In these cases the use of more time‐consuming 1D forward and inverse modelling provide the only acceptable solution that is also computationally feasible. When target structures are known to be quasi layered and spatially coherent it is beneficial to incorporate this assumption directly into the inversion. This implies inverting multiple soundings at a time in larger constrained problems, which allows for resolving geological layers that are undetectable using simple independent inversions. Ideally, entire surveys should be inverted at a time in huge constrained problems but poor scaling properties of the underlying algorithms typically make this challenging. Here, we document how we optimized an inversion code for very large‐scale constrained airborne electromagnetic problems. Most importantly, we describe how we solve linear systems using an iterative method that scales linearly with the size of the data set in terms of both solution time and memory consumption. We also describe how we parallelized the core region of the code, in order to obtain almost ideal strong parallel scaling on current 4‐socket shared memory computers. We further show how model parameter uncertainty estimates can be efficiently obtained in linear time and we demonstrate the capabilities of the full implementation by inverting a 3327 line km SkyTEM survey overnight. Performance and scaling properties are discussed based on the timings of the field example and we describe the criteria that must be fulfilled in order to adapt our methodology for similar type problems.  相似文献   

6.
Klauder wavelet removal before vibroseis deconvolution   总被引:1,自引:0,他引:1  
The spiking deconvolution of a field seismic trace requires that the seismic wavelet on the trace be minimum phase. On a dynamite trace, the component wavelets due to the effects of recording instruments, coupling, attenuation, ghosts, reverberations and other types of multiple reflection are minimum phase. The seismic wavelet is the convolution of the component wavelets. As a result, the seismic wavelet on a dynamite trace is minimum phase and thus can be removed by spiking deconvolution. However, on a correlated vibroseis trace, the seismic wavelet is the convolution of the zero-phase Klauder wavelet with the component minimum-phase wavelets. Thus the seismic wavelet occurring on a correlated vibroseis trace does not meet the minimum-phase requirement necessary for spiking deconvolution, and the final result of deconvolution is less than optimal. Over the years, this problem has been investigated and various methods of correction have been introduced. In essence, the existing methods of vibroseis deconvolution make use of a correction that converts (on the correlated trace) the Klauder wavelet into its minimum-phase counterpart. The seismic wavelet, which is the convolution of the minimum-phase counterpart with the component minimum-phase wavelets, is then removed by spiking deconvolution. This means that spiking deconvolution removes both the constructed minimum-phase Klauder counterpart and the component minimum-phase wavelets. Here, a new method is proposed: instead of being converted to minimum phase, the Klauder wavelet is removed directly. The spiking deconvolution can then proceed unimpeded as in the case of a dynamite record. These results also hold for gap predictive deconvolution because gap deconvolution is a special case of spiking deconvolution in which the deconvolved trace is smoothed by the front part of the minimum-phase wavelet that was removed.  相似文献   

7.
A crucial step in the use of synthetic seismograms is the estimation of the filtering needed to convert the synthetic reflection spike sequence into a clearly recognizable approximation of a given seismic trace. In the past the filtering has been effected by a single wavelet, usually found by trial and error, and evaluated by eye. Matching can be made more precise than this by using spectral estimation procedures to determine the contribution of primaries and other reflection components to the seismic trace. The wavelet or wavelets that give the least squares best fit to the trace can be found, the errors of fit estimated, and statistics developed for testing whether a valid match can be made. If the composition of the seismogram is assumed to be known (e.g. that it consists solely of primaries and internal multiples) the frequency response of the best fit wavelet is simply the ratio of the cross spectrum between the synthetic spike sequence and the seismic trace to the power spectrum of the synthetic spike sequence, and the statistics of the match are related to the ordinary coherence function. Usually the composition cannot be assumed to be known (e.g. multiples of unknown relative amplitude may be present), and the synthetic sequence has to be split into components that contribute in different ways to the seismic trace. The matching problem is then to determine what filters should be applied to these components, regarded as inputs to a multichannel filter, in order to best fit the seismic trace, regarded as a noisy output. Partial coherence analysis is intended for just this problem. It provides fundamental statistics for the match, and it cannot be properly applied without interpreting these statistics. A useful and concise statistic is the ratio of the power in the total filtered synthetic trace to the power in the errors of fit. This measures the overall goodness-of-fit of the least squares match. It corresponds to a coherent (signal) to incoherent (noise) power ratio. Two limits can be set on it: an upper one equal to the signal-to-noise ratio estimated from the seismic data themselves, and a lower one defined from the distribution of the goodness-of-fit ratios yielded by matching with random noise of the same bandwidth and duration as the seismic trace segment. A match can be considered completely successful if its goodness-of-fit reaches the upper limit; it is rejected if the goodness-of-fit falls below the lower one.  相似文献   

8.
Comparisons of wavelets, contourlets and curvelets in seismic denoising   总被引:1,自引:0,他引:1  
Seismic synthetic records represent wave-front components which contain abundant damageable directional information about important geologic substances. However, the information is often polluted by random noises. Unlike coherent noise, random noise may be incoherent in space and time, and sometimes unpredictable. One of the main tasks in seismic denoising is to eliminate the random noise and useless interferential wave components while preserving or recovering the important seismic features. In this paper, we investigate multi-resolution (MR) methods including wavelets, contourlets and curvelets for seismic denoising of random noise. Discussions and interpretations for these methods are presented in detail to evaluate their performances. Furthermore, a combination scheme of wavelets and curvelets is applied to seismic random denoising by solving an l1 norm optimization problem. The combined scheme aims at taking advantage of the respective merits of wavelets and curvelets in order to obtain better effects. Experimental results indicate that the directional wavelets such as contourlets and curvelets are prominent for seismic profiles containing textural features and the combination method shows promising performances than individual transforms.  相似文献   

9.
地震资料处理中小波函数的选取研究   总被引:101,自引:14,他引:101       下载免费PDF全文
本文给出了常见地震子波的一个模拟公式,可以很好地模拟零相位及混合相位子波,在一定意义上也可以近似模拟最大相位及最小相位子波.模拟出的子波加上适当的修正项后满足允许条件,可用作小波函数.与Morlet小波类似,在实际应用中这些修正项在一定条件下可以略去,文中对Morlet小波作了改造,使其能更好地适应于地震资料处理.研究了反射波能量及噪声等干扰波在时间-尺度域的分布特征与所选基本小波的关系.提出用地震子波(或与地震子波相近的函数)作为基本小波,对地震资料进行去噪及分频解释的方法.最后用实例证明方法的有效性.  相似文献   

10.
地震复谱分解技术及其在烃类检测中的应用   总被引:2,自引:1,他引:1       下载免费PDF全文
谱分解技术在地震解释领域已得到广泛应用,但常用的谱分解方法存在两方面的不足.一是时间分辨率低,难以对薄层进行刻画;二是在烃类检测中多解性强,难以区分流体类型.为了改善该问题,本文提出一种基于地震复谱分解技术的烃类检测方法.复谱分解是指用一个包含多个不同频率Ricker子波的复子波库对地震道进行分解,从而得到时变子波频率和相位信息的过程.借助稀疏反演技术复谱分解可以获得高分辨率的时频能量谱和时频相位谱.本文首先通过拟合算例验证了复谱分解方法刻画薄层的能力以及求取子波频率和相位的准确性.然后利用基于Kelvin-Voigt模型的黏弹波动方程数值模拟对衰减引起子波相位改变的原因进行了分析.最后通过实际资料应用展示了本文方法在储层预测中的高时间分辨率优势,验证了利用子波相位信息识别气藏的有效性.  相似文献   

11.
One of the first operations in a seismic signal processing system applied to earthquake data is to distinguish between valid and invalid records. Since valid signals are characterized by a combination of their time and frequency properties, wavelets are natural candidates for describing seismic features in a compact way. This paper develops a seismic buffer pattern recognition technique, comprising wavelet-based feature extraction, feature selection based on the mutual information criterion, and neural classification based on feedforward networks. The ability of the wavelet transform to capture discriminating information from seismic data in a small number of features is compared with alternative feature reduction techniques, including statistical moments. Three different variations of the wavelet transform are used to extract features: the discrete wavelet transform, the single wavelet transform and the continuous wavelet transform. The mutual information criterion is employed to select a relatively small set of wavelets from the time–frequency grid. Firstly, it is determined whether wavelets can capture more informative data in an equal number of features compared with other features derived from raw data. Secondly, wavelet-based features are compared with features selected based on prior knowledge of class differences. Thirdly, a technique is developed to optimize wavelet features as part of the neural network training process, by using the wavelet neural network architecture. The automated classification techniques developed in this paper are shown to perform similarly to human operators trained for this function. Wavelet-based techniques are found to be useful, both for preprocessing of the raw data and for extracting features from the data. It is demonstrated that the definition of wavelet features can be optimized using the classification wavelet network architecture.  相似文献   

12.
In many branches of science, techniques designed for use in one context are used in other contexts, often with the belief that results which hold in the former will also hold or be relevant in the latter. Practical limitations are frequently overlooked or ignored. Three techniques used in seismic data analysis are often misused or their limitations poorly understood: (1) maximum entropy spectral analysis; (2) the role of goodness-of-fit and the real meaning of a wavelet estimate; (3) the use of multiple confidence intervals. It is demonstrated that in practice maximum entropy spectral estimates depend on a data-dependent smoothing window with unpleasant properties, which can result in poor spectral estimates for seismic data. Secondly, it is pointed out that the level of smoothing needed to give least errors in a wavelet estimate will not give rise to the best goodness-of-fit between the seismic trace and the wavelet estimate convolved with the broadband synthetic. Even if the smoothing used corresponds to near-minimum errors in the wavelet, the actual noise realization on the seismic data can cause important perturbations in residual wavelets following wavelet deconvolution. Finally the computation of multiple confidence intervals (e.g. at several spatial positions) is considered. Suppose a nominal, say 90%, confidence interval is calculated at each location. The confidence attaching to the simultaneous use of the confidence intervals is not then 90%. Methods do exist for working out suitable confidence levels. This is illustrated using porosity maps computed using conditional simulation.  相似文献   

13.
We propose a workflow of deblending methodology comprised of rank-reduction filtering followed by a signal enhancing process. This methodology can be used to preserve coherent subsurface reflections and at the same time to remove incoherent and interference noise. In pseudo-deblended data, the blending noise exhibits coherent events, whereas in any other data domain (i.e. common receiver, common midpoint and common offset), it appears incoherent and is regarded as an outlier. In order to perform signal deblending, a robust implementation of rank-reduction filtering is employed to eliminate the blending noise and is referred to as a joint sparse and low-rank approximation. Deblending via rank-reduction filtering gives a reasonable result with a sufficient signal-to-noise ratio. However, for land data acquired using unconstrained simultaneous shooting, rank-reduction–based deblending applications alone do not completely attenuate the interference noise. A considerable amount of signal leakage is observed in the residual component, which can affect further data processing and analyses. In this study, we propose a deblending workflow via a rank-reduction filter followed by post-processing steps comprising a nonlinear masking filter and a local orthogonalization weight application. Although each application shows a few footprints of leaked signal energy, the proposed combined workflow restores the signal energy from the residual component achieving significantly signal-to-noise ratio enhancement. These hierarchical schemes are applied on land simultaneous shooting acquisition data sets and produced cleaner and reliable deblended data ready for further data processing.  相似文献   

14.
Geophysical Applications of Multidimensional Filtering with Wavelets   总被引:1,自引:0,他引:1  
--We present imaging results in geophysics based on using multidimensional Gaussian wavelets as a filter in a 2-D Cartesian domain. Besides decomposing the field into various distinct lengthscales, we have also constructed the 2-D maps describing the spatial distributions of the maximum of the wavelet-transformed L2-norm Emax (x,y) and its corresponding local wavenumber kmax (x,y), where x and y are the Cartesian coordinates. For geoid anomalies, using a wavelet filter extending to 90 degrees, we have discerned the distinct outlines of convergent and divergent tectonic zones and have conducted a quantitative comparison of the short-wavelength gravitational anomalies at those wavelengths between two different geographical locations. We have also compared the wavelet results with a nonlinear bandpass filter in the spectral domain where a Gaussian filter with the logarithm of the degree l acting as the argument has been employed. A wavelet solution, with a length-scale corresponding to 256 degrees, would need a filter with over 400 spherical harmonics centering around l=157 for an optimal spatial fit. The computational effort with the bandpass filter technique greatly exceeds those associated with wavelets. We have also shown the ability of the wavelets to analyze the vastly different scales present in high Rayleigh number convection and the mixing of passive heterogeneities driven by thermal convection. Wavelets will be a useful tool for rapid analyzing of the large multidimensional fields to be captured in many other geophysical endeavors, such as the upcoming gravity satellite missions and satellite radar interferometry images.  相似文献   

15.
利用零偏移VSP资料估计介质品质因子方法研究   总被引:15,自引:3,他引:15       下载免费PDF全文
利用峰值频率移动法估算零偏VSP资料的品质因子Q.该方法用Ricker子波和匹配地震子波分别逼近零相位和混合相位的震源子波,得到了峰值频率移动法估计Q值的公式.进而针对常规方法估计的地震子波峰值频率精度不高的问题,提出了估计地震子波峰值频率的特征结构法.通过合成零偏VSP资料的仿真试验,验证了峰值频率移动法估计Q值的正确性.仿真结果表明,与快速Fourier变换和Burg最大熵方法相比较,特征结构法得到的峰值频率和Q值精度高一些.仿真结果也表明,用峰值频率移动法估计Q值时需要选取恰当的子波参数,否则影响Q值估计的精度.  相似文献   

16.
针对高阶统计量混合相位地震子波提取方法的局限性, 提出一种基于矢量预测的单输入多输出系统(SIMO)的混合相位地震子波提取方法. 该方法利用二阶循环平稳统计量包含的系统相位信息, 将CMP道集视为一个单输入多输出系统的输出, 利用道集中相邻两道或多道数据通过矢量预测来构建反子波计算的方程式, 进一步进行混合相位子波提取. 利用提取出的子波相位信息对CMP道集进行纯相位滤波, 能够替代相位校正技术, 并且利用获取的反褶积算子对CMP道集进行反褶积处理, 使提高分辨率后的不同道子波振幅、 频率、 波形相一致, 提高叠加的质量. 模型试算和实际资料处理结果表明, 文中方法适用于任意相位的子波提取及反褶积处理, 且处理精度较高, 具有较高的实际应用价值.   相似文献   

17.
声子波及其在地震波资料分解中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
声子波是由声波波动方程的解构成的一种物理子波,如果不考虑吸收和散射,声子波的传播是相当简单的;相反地,数学子波的传播即使在均匀介质中也是极其复杂的.作为波动方程的解,声子波比一般的数学子波更能有效地应用于复杂声波和地震波的分解和分析.本文从Kaiser的声子波理论出发,给出了通过分别引入点源波形的复时间函数和点源虚时间坐标来构成声子波的两种解释,并对点源模型的合成地震图和实际复杂模型的地震波资料进行了时-空域的声子波变换,说明了声子波应用于地震波资料分解的有效性.  相似文献   

18.
航空重力测量数据的小波滤波处理   总被引:16,自引:7,他引:9       下载免费PDF全文
构造三类连续小波函数对航空重力测量数据进行小波滤波处理. 三类连续小波函数分别用于对测量数据在某一空间尺度(或时间尺度)上的低通,一阶求导和二阶求导滤波. 着重介绍三类连续小波函数的构造原理与过程,并说明其相对于传统的数字滤波器的优势. 对系统的技术参数(滤波器窗口宽度参数δ 和尺度参数s)进行了调试实验. 实算结果显示了方法的可行性和有效性.  相似文献   

19.
Detection of pulse-like ground motions based on continues wavelet transform   总被引:5,自引:1,他引:4  
This paper implements a quantitative approach to detect pulse-like ground motions based on continues wavelet transform, which is able to clearly identify sudden jumps in time history of earthquake records by considering contribution of different levels of frequency. These analyses were performed on a set of time series records obtained in near-fault regions of Iran. Pulse-like ground motions frequently resulted from directivity effects in near-fault area and are of interest in the field of seismology and also earthquake engineering for seismic performance evaluation of structures. The results of this study basically help us to establish a suitable platform for selecting pulse-like records, while performance evaluation of structure in near-fault area will need to account. The period of velocity pulses as a key parameter that significantly affects structural response is simply determined by using a pseudo-period of the mother wavelets. In addition, the efficiency of different types of mother wavelets on classification performance and the features of detected pulse are investigated by applying seven different kinds of mother wavelets. The analyses indicate that the selection of most appropriate mother wavelet plays a significant role in effective extraction of ground motion features and consequently in estimation of velocity pulse period. As a result, the user should be aware of what is selected as a mother wavelet in the analysis. The comparisons given here among different mother wavelets also show the better performance of BiorSpline (bior1.3) basis from biorthognal wavelet families for the preferred purpose in this paper.  相似文献   

20.
针对利用地震道进行相对波阻抗反演中遇到的横向连续性难以保持、初始子波容错度差以及随机噪声干扰影响反演结果等问题,提出了一种基于矩阵Toeplitz稀疏分解的相对波阻抗反演方法.该方法将地震数据剖面的Toeplitz稀疏分解问题分解为两个子反演问题,其一以Toeplitz子波矩阵元素为待反演的参数,用Fused Lasso方法求解,可保证子波具有紧支集且是光滑的;其二以稀疏反射系数矩阵元素为待反演参数,用基于回溯的快速萎缩阈值迭代算法求解,大大降低了目标函数中参数选择的难度.通过交替迭代求解上述两个子反演问题可将地震数据剖面因式分解为一个Toeplitz子波矩阵和一个稀疏反射系数矩阵;然后由反射系数矩阵递推反演可以得到高分辨率的相对波阻抗剖面;利用测井资料加入低频分量后,也可得到高分辨率的绝对波阻抗剖面.Marmousi2模型生成的合成记录算例和实际地震资料算例均表明:本文方法可以从带限地震数据中有效地反演相对波阻抗,反演结果分辨率高并且能够很好地保持地震数据的横向连续性;即使在初始估计子波存在误差和地震数据被随机噪声污染的情况下也能取得较好的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号