首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA––A model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4π2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature.  相似文献   

3.
The case is presented that the efficiency of variable viscosity convection in the Earth's mantle to remove heat may depend only very weakly on the internal viscosity or temperature. An extensive numerical study of the heat transport by 2-D steady state convection with free boundaries and temperature dependent viscosity was carried out. The range of Rayleigh numbers (Ra) is 104?107 and the viscosity contrast goes up to 250000. Although an absolute or relative maximum of the Nusselt number (Nu) is obtained at long wavelength in a certain parameter range, at sufficiently high Rayleigh number optimal heat transport is achieved by an aspect ratio close to or below one. The results for convection in a square box are presented in several ways. With the viscosity ratio fixed and the Rayleigh number defined with the viscosity at the mean of top and bottom temperature the increase of Nu with Ra is characterized by a logarithmic gradient β = ?ln(Nu)/? ln(Ra) in the range of 0.23–0.36, similar to constant viscosity convection. More appropriate for a cooling planetary body is a parameterization where the Rayleigh number is defined with the viscosity at the actual average temperature and the surface viscosity is fixed rather than the viscosity ratio. Now the logarithmic gradient β falls below 0.10 when the viscosity ratio exceeds 250, and the velocity of the surface layer becomes almost independent of Ra. In an end-member model for the Earth's thermal evolution it is assumed that the Nusselt number becomes virtually constant at high Rayleigh number. In the context of whole mantle convection this would imply that the present thermal state is still affected by the initial temperature, that only 25–50% of the present-day heat loss is balanced by radiogenic heat production, and the plate velocities were about the same during most of the Earth's history.  相似文献   

4.
Some consequences arising from the superposition of flows of two different kinds or scales in a non-Newtonian mantle are discussed and applied to the cases mantle convection plus postglacial rebound flow as well as small- plus large-scale mantle convection. If the two flow types have similar magnitude, the apparent rheology of both flows becomes anisotropic and the apparent viscosity for one flow depends on the geometry of the other. If one flow has a magnitude significantly larger than the other, the apparent viscosity for the weak flow is linear but develops direction-dependent variations about a factorn (n being the power exponent of the rheology). For the rebound flow lateral variations of the apparent viscosity about at least 3 are predicted and changes in the flow geometry and relaxation time are possible. On the other hand, rebound flow may weaken the apparent viscosity for convection. Secondary convection under moving plates may be influenced by the apparent anisotropic rheology. Other mechanisms leading to viscous anisotropy during shearing may increase this effect. A linear stability analysis for the onset of convection with anisotropic linear rheology shows that the critical Rayleigh number decreases and the aspect ratio of the movement cells increases for decreasing horizontal shear viscosity (normal viscosity held constant). Applied to the mantle, this model weakens the preference of convection rolls along the direction of plate motion. Under slowly moving plates, rolls perpendicular to the plate motion seem to have a slight preference. These results could be useful for resolving the question of Newtonian versus non-Newtonian or isotropic versus anisotropic mantle rheology.  相似文献   

5.
This paper presents a study of high Rayleigh number (up to 200 times supercritical) axisymmetrical convection in a spherical shell with an aspect ratio relevant for the Earth's lower mantle. Both bottom-heated and internal heated cases have been considered. Computations have been carried out for an infinite Prandtl number isoviscous fluid with free slip isothermal boundary conditions. The first part of the paper is devoted to the influence of the resolution on the accuracy of the numerical results. It is shown that the resolution strongly influences the onset of time dependence. Recent methods of non-linear physics have been used to prove that the time dependence and the chaotic behaviors of the solutions are real ones. From these results we can confirm that convection is chaotic, in this particular geometry, even for Rayleigh numbers 200 times critical. Aperiodic boundary layer instabilities are found to be incapable of breaking up the large-scale flow, owing to the shear of the global circulation. Spectral analysis of the power associated with the thermal anomalies shows that there is an upward cascade of energy, due to small-scale chaotic instabilities, from l = 2 to l = 4–6 at the bottom boundary, in agreement with new seismic observations at the core-mantle boundary [1–3].  相似文献   

6.
Seismic anisotropy provides important constraints on deformation patterns of Earth's material. Rayleigh wave dispersion data with azimuthal anisotropy can be used to invert for depth-dependent shear wavespeed azimuthal anisotropy, therefore reflecting depth-varying deformation patterns in the crust and upper mantle. In this study, we propose a two-step method that uses the Neighborhood Algorithm(NA) for the point-wise inversion of depth-dependent shear wavespeeds and azimuthal anisotropy from Rayleigh wave azimuthally anisotropic dispersion data. The first step employs the NA to estimate depthdependent VSV(or the elastic parameter L) as well as their uncertainties from the isotropic part Rayleigh wave dispersion data. In the second step, we first adopt a difference scheme to compute approximate Rayleigh-wave phase velocity sensitivity kernels to azimuthally anisotropic parameters with respect to the velocity model obtained in the first step. Then we perform the NA to estimate the azimuthally anisotropic parameters Gc/L and Gs/L at depths separately from the corresponding cosine and sine terms of the azimuthally anisotropic dispersion data. Finally, we compute the depth-dependent magnitude and fast polarization azimuth of shear wavespeed azimuthal anisotropy. The use of the global search NA and Bayesian analysis allows for more reliable estimates of depth-dependent shear wavespeeds and azimuthal anisotropy as well as their uncertainties.We illustrate the inversion method using the azimuthally anisotropic dispersion data in SE Tibet, where we find apparent changes of fast axes of shear wavespeed azimuthal anisotropy between the crust and uppermost mantle.  相似文献   

7.
Abstract

Nonlinear two-dimensional magnetoconvection, with a Boussinesq fluid driven across the field-lines, is taken as a model for giant-cell convection in the sun and late-type stars. A series of numerical experiments shows the sensitivity of the horizontal scale of convection to the applied field and to the Rayleigh number R. Overstable oscillations occur in cells as broad as they are deep, but increasing R leads to steady motions of much greater wavelength. Purely geometrical effects can cause oscillation: this work implies that strong horizontal field will in general lead to time-dependent convection.  相似文献   

8.
Many rocks possess electrical properties with a clearly expressed anisotropy. The anisotropic character of the rocks is often overlooked in forming the Fréchet derivatives or sensitivity functions for parameter updating during the inversion of DC resistivity data. In this study we have compared the sensitivity patterns for an isotropic, homogeneous model with that for a transversely isotropic (i.e. anisotropic) model having a tilted axis of symmetry using a pole–pole array. The sensitivity functions are expressed in terms of the derivatives of the electric potential U with respect to the average conductivity σm (geometric mean of the longitudinal and transverse conductivities) and the coefficient of anisotropy λ. Results are plotted in both cross-section form and plan view for various dip and strike angles of the axis of symmetry. The derivative dU/dλ decreases more rapidly than the isotropic value dU/dσ, and shows pronounced asymmetry and weakening of magnitude with increasing dip of the plane of symmetry. The derivative dU/dσm also exhibits the asymmetric pattern (except for vertical and horizontal dip cases). The positive region between the electrodes only extends to a small depth compared to the isotropic derivative, even in the case of a vertical axis of symmetry (VTI medium). The ratio of this anisotropic derivative to the isotropic derivative, when plotted as a function of position and depth shows prominent differences in both the sign and the magnitude of the sensitivities, especially for steep dips and for strongly anisotropic rocks. The plot highlights the dangers of an isotropic assumption. Even for mildly anisotropic rocks (λ < 1.2) the possibility for error in interpretation is considerable. Combined borehole and surface measurements are needed to diagnose anisotropy. Further work is needed to design optimal electrode configurations in anisotropic situations.  相似文献   

9.
Abstract

The annulus model considers convection between concentric cylinders with sloping endwalls. It is used as a simplified model of convection in a rapidly rotating sphere. Large azimuthal wavenumbers are preferred in this problem, and this has been exploited to develop an asymptotic approach to nonlinear convection in the annulus. The problem is further reduced because the Taylor-Proudman constraint simplifies the dependence in the direction of the rotation vector, so that a nonlinear system dependent only on the radial variable and time results. As Rayleigh number is increased a sequence of bifurcations is found, from steady solutions to periodic solutions and 2-tori, typically ending in chaotic behaviour. Both the magnetic (MHD convection) and non-magnetic problem has been considered, and in the non-magnetic case our bifurcation sequence can be compared with those found by previous two-dimensional numerical simulations.  相似文献   

10.
ABSTRACT

Turbulence in the Earth's outer core not only increases all diffusive coefficients, but it can lead to their anisotropic properties. Therefore, the model of rotating magnetoconvection in horizontal plane layer rotating about vertical axis and permeated by homogeneous horizontal magnetic field, influenced by anisotropic diffusivities, viscosity and thermal diffusivity, is advanced by considering the magnetic diffusivity as anisotropic too. The case of full anisotropy, i.e. all coefficients anisotropic, is compared with both the case possessing isotropic diffusion coefficients and the case of partial anisotropy, i.e. mixed case with isotropic and anisotropic diffusive coefficients (viscosity and thermal diffusivity anisotropic and magnetic diffusivity isotropic). The existence and preference of instabilities is sensitive to all non-dimensional parameters, as well as on anisotropic parameter, the ratio of horizontal and vertical diffusivities. Two types of anisotropy, BM (introduced by Braginsky and Meytlis) and SA (stratification anisotropy) are studied. BM as well as SA were applied by ?oltis and Brestenský to the study of the partial anisotropy; this study is extended, in this paper, to full anisotropy cases (full SA and full BM) and it is shown that the style of convection given by the onset of stationary modes is more affected by anisotropic diffusivities in BM than in SA anisotropy. The important influence of strong anisotropies in the Earth's core dynamics is stressed.  相似文献   

11.
Numerical experiments have been carried out on two-dimensional thermal convection, in a Boussinesq fluid with infinite Prandtl number, at high Rayleigh numbers. With stress free boundary conditions and fixed heat flux on upper and lower boundaries, convection cells develop with aspect ratios (width/depth) λ? 5, if heat is supplied either entirely from within or entirely from below the fluid layer. The preferred aspect ratio is affected by the lateral boundary conditions. If the temperature, rather than the heat flux, is fixed on the upper boundary the cells haveλ ≈ 1. At Rayleigh numbers of 2.4 × 105 and greater, small sinking sheets are superimposed on the large aspect ratio cells, though they do not disrupt the circulation. Similar two-scale flows have been proposed for convection in the earth's mantle. The existence of two scales of flow in two-dimensional numerical experiments when the viscosity is constant will allow a variety of geophysically important effects to be investigated.  相似文献   

12.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

13.
Many observations and studies indicate that pore fluid pressure in the crustal rocks plays an important role in deformation, faulting, and earthquake processes. Conventional models of pore pressure effects often assume isotropic porous rocks and yield the nondeviatoric pressure effects which seem insufficient to explain diverse phenomena related to pore pressure variation, such as fluid-extraction induced seismicity and crustal weak faults. We derive the anisotropic effective stress law especially for transversely-isotropic and orthotropic rocks, and propose that the deviatoric effects of pore fluid pressure in anisotropic rocks not only affect rock effective strength but also cause variation of shear stresses. Such shear stress variations induced by either pore pressure buildup or pore pressure decline may lead to faulting instability and trigger earthquakes, and provide mechanisms for the failure of crustal weak faults with low level of shear stresses. We believe that the deviatoric effects of pore fluid pressure in anisotropic rocks are of wide application in studies of earthquake precursors and aftershocks, oil and gas reservoir characterization, enhanced oil recovery, and hydraulic fracturing.  相似文献   

14.
15.
Summary In the atmosphere there may be layers undergoing cellular convection with a much larger heat flux through the base of the layer than through the top. This may be either because there is a steady loss of heat by radiation from the body of the fluid or because the temperature is everywhere rising. In this latter case the temperature gradients could remain constant so that the mechanics would be the same as if the heat were being lost and the temperature kept steady. The fluid is considered incompressible as in the classical theory of cellular convection, and we determine the critical Rayleigh number for the onset of convection and the width to height ratio of the cells as functions of the heat loss. The problem, is in some respects analogous to that of the motion of a viscous fluid between rotating cylinders but in this case there are two non-dimensional-numbers-the Rayleigh number (g h 4/K v) and a number representing the ratio of the heat loss by radiation to the heat flux. It is found that the critical Rayleigh number is decreased and the cells widened as had already been found for the case of a fluid with transfer coefficients having a spatial variation, with free boundaries, but the cells are made more narrow if the boundaries are rigid.  相似文献   

16.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Love and Rayleigh wave phase velocities are analyzed with the goal of retrieving information about the anisotropic structure of the Iberian lithosphere. The cross-correlation method is used to measure the interstation phase velocities between diverse stations of the ILIHA network at periods between 20 and 120 s. Despite the 2-D structure of the network, the Love wave data are too few to enable an analysis of phase velocity azimuthal variations. Azimuthal averages of Love and Rayleigh wave phase velocities are calculated and inverted both in terms of isotropic and anisotropic structures. Realistic isotropic models explain the Rayleigh wave and short-period Love wave phase velocities. Therefore no significant anisotropy needs to be introduced in the crust and down to 100 km depth in the upper mantle to explain our data. A discrepancy is observed only at long periods, where the data are less reliable. Love wave data at periods between 80 and 120 s remain 0.15 km/s faster than predicted by isotropic models explaining the long-period Rayleigh wave data. Possibilities of biases in the measurements due to interferences with higher modes are examined but seem unlikely. A transversely isotropic model with 8% of S-wave velocity anisotropy in the upper mantle at depths larger than 100 km can explain the whole set of data. In terms of a classical model of mantle anisotropy, this corresponds to 100% of the crystals perfectly oriented in the horizontal plane in a pyrolitic mantle. This is a rather extreme model, which predicts at time delay between 0 and 2 seconds for split SKS.  相似文献   

18.
We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.  相似文献   

19.
To investigate the characteristics of the anisotropic stratum, a multi‐azimuth seismic refraction technique is proposed in this study since the travel time anomaly of the refraction wave induced by this anisotropic stratum will be large for a far offset receiver. To simplify the problem, a two‐layer (isotropy–horizontal transverse isotropy) model is considered. A new travel time equation of the refracted P‐wave propagation in this two‐layer model is derived, which is the function of the phase and group velocities of the horizontal transverse isotropic stratum. In addition, the measured refraction wave velocity in the physical model experiment is the group velocity. The isotropic intercept time equation of a refraction wave can be directly used to estimate the thickness of the top (isotropic) layer of the two‐layer model because the contrast between the phase and group velocities of the horizontal transverse isotropic medium is seldom greater than 10% in the Earth. If the contrast between the phase and group velocities of an anisotropic medium is small, the approximated travel time equation of a refraction wave is obtained. This equation is only dependent on the group velocity of the horizontal transverse isotropic stratum. The elastic constants A11, A13, and A33 and the Thomsen anisotropic parameter ε of the horizontal transverse isotropic stratum can be estimated using this multi‐azimuth seismic refraction technique. Furthermore, under a condition of weak anisotropy, the Thomsen anisotropic parameter δ of the horizontal transverse isotropic stratum can be estimated by this technique as well.  相似文献   

20.
Abstract

Finite-difference calculations have been carried out to determine the structure of finite-amplitude thermal convection within a self-gravitating fluid sphere with uniform heat release. For a fixed-surface boundary condition single-cell convection breaks up into double-cell convection at a Rayleigh number of 3 × 104, at a Rayleigh number of 5 × 105 four-cell convection is observed. With a free-surface boundary condition only single cell convection is obtained up to a Rayleigh number of 5 × 106.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号