首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

2.
Co-ordinated rocket measurements of the O2(a1Δg−X3Σg) Infrared Atmospheric (0-0) band emission profile and the atomic oxygen densities in an undisturbed night-time atmosphere are used to investigate the processes responsible for the excitation of O2(a1Δg) in the terrestrial nightglow. It is shown that three-body recombination of atomic oxygen, and subsequent energy transfer processes, can explain only part of the observed emission profile and that at least two other sources of O2(a1Δg) emission must exist. One of these additional sources, responsible for most of the emission observed below 90km, is identified as arising from the night-time residual of the very large dayglow 1Δg population. The other additional source is required to explain most of the emission observed above 95km. The processes responsible for this high altitude component cannot be identified but the vertical distribution of the required source function strongly resembles the profile of the atomic oxygen density squared and suggests that a two-body radiative recombination process may be involved. However, the measured zenith emission rates can also be explained without the high altitude source of O2(a1Δg) if optical emission at 1.27 μm was induced by the rocket as it penetrated the nightglow layer.  相似文献   

3.
Measurements of the O2(A3Σ − X3Σ) Herzberg system in the night airglow have been made with the ESRO TD-1 satellite in the wavelength range 2400–3100 A. The slant emission rate varies from 3.5 to 15 kR, indicating an irregular structure of the atomic oxygen near the turbopause. A statistical maximum intensity is found near the tropic in the winter hemisphere. The intensity profile is consistent with excitation by three-body recombination of oxygen atoms. The observed total emission rate can be accounted for by reasonable atomic oxygen densities and an O2(A3Σ) production efficiency of about 20% if quenching by N2 occurs at the rate deduced from laboratory and other airglow measurements.  相似文献   

4.
Absolute values of the emission cross sections for five vibrational bands in the Meinel system of N2+,A2πu to X2Σg+, excited by electron impact are presented. From these, a value was obtained for the total excitation cross section of the A2πu state at 100 eV of 26·5 × 10−18 cm2. The results are compared with those of other workers and with theory. Collisional transfer of the excitation energy from the levels of the A2πu state was also observed with a transfer cross section of approximately 10−14 cm2.  相似文献   

5.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

6.
Pectroscopic data on the shifts and widths of the energy levels of molecular oxygen have been used in the empirical construction of a diabatic potential matrix that characterizes the interactions of the B3u state with the 5Πu, 23+u, 3Πu and 1Πu states. The diabatic potential matrix is u theory formulation to calculate the cross-sections for the excitation of O(1D) atoms in collisions of two O(3P) atoms. Total cross-sections are obtained by adding the excitation from the 3Πg, channel. The rate coefficient for quenching of O(1D) by O(3P) is evaluated as a function of temperature. The values conflict with a recent analysis of the emission of the oxygen red line in the upper atmosphere.  相似文献   

7.
In this paper we analyse the observational data obtained by the Chinese-made PZT in the two periods 1979 Feb – 1980 May and 1981 Dec – 1983 March. The internal accuracy of single star is found to be mu = ±13.0 ms, mφ = ±0. “144 for the first period, and mu = ±14.6 ms, mφ = ±0.” 152 for the second. Correction of star position is found by the chain method. The systematic error caused by the sealed window of the evacuated chamber and the temperature effect of the plate scale are investigated. Monthly means of time and latitude are given.  相似文献   

8.
Charged boson stars and vacuum instabilities   总被引:1,自引:0,他引:1  
We consider charged boson stars and study their effect on the structure of the vacuum. For very compact particle like “stars”, with constituent mass m* close to the Planck mass mPl, i.e. m2* = O(m2Pl), we argue that there is electric charge Zc, which, primarily, is due to the formation of a pion condensate (Zc 0.5−1e, where is the fine structure constant and e is the electric charge of the positron). If the charge of the “star” is larger than Zc we find numerical evidence for a complete screening indicating a limiting charge for a very compact object. There is also a less efficient competing charge screening mechanism due to spontaneous electron-positron pair creation in which case Zc −1e. Astrophysical and cosmological abundances of charged compact boson stars are briefly discussed in terms of dark matter.  相似文献   

9.
A rocket experiment was conducted which measured the infrared bands of the excited hydroxyl radical in the night airglow. The OH emission was found in a layer centered at 87 km having a half-width of 6 km and a total emission of 1.1 MR. The atomic oxygen altitude profile, ranging from 1.3 × 1010 atoms/cm3 at 83 km to 3 × 1011 atoms/cm3 at 90 km is determined from the hydroxyl airglow measurements. This derivation is based on the steady state balance between ozone formation from atomic oxygen and its destruction by hydrogen which produces the OH infrared emission.  相似文献   

10.
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.  相似文献   

11.
Theoretical and experimental studies suggest that the recombination of atomic and molecular oxygen gives rise initially to ozone in the electronically excited state (11A2). Suggestions are made about the possible role of electronically excited ozone in stratospheric chemistry and in the nightglow.  相似文献   

12.
Simultaneous measurements of the nightglow profiles of the O2(b1Σg+?X3Σg?) A-band, the atomic oxygen green line and the OH (8?3) Meinel band are presented. The altitude profiles are used to determine both the excitation mechanisms for the oxygen emissions and the atomic oxygen altitude distribution. It is shown that the measurements are consistent with a green line excitation through the Barth mechanism and that the molecular oxygen emission is excited through oxygen recombination and the reaction between OH1 and atomic oxygen. The derived atomic oxygen concentrations,6.2 × 1011cm?3at 98km, are consistent with the Jacchia (1971) model.  相似文献   

13.
Measurements of the density at the F2 peak (NmF2) were obtained by the Boulder, Colorado, ionosonde as part of the SUNDIAL-86 campaign. The measurements were made during a period of low to moderate geomagnetic activity following a “disturbed” day. These measurements were then used to estimate the height of the F2 peak (hmF2). A three-dimensional time-dependent model of Earth's ionosphere was used to calculate NmF2 and hmF2 using the vertical plasma drift as a free parameter. Since the plasmasphere-ionosphere exchange flux can remain upward during the night for these conditions, different feasible flux scenarios were inputed to the ionospheric model. These different flux scenarios had a large effect on the “induced” vertical plasma drifts required to match the measurements (i.e. at times greater than a factor of 2 in speed or a difference in direction). Futhermore, uncertainty in the O+---O collision frequency changes the required vertical plasma drift at night. Despite knowledge of hmF2, interpretation of the vertical plasma drifts as meridional neutral winds is compromised by a lack of knowledge of the plasmasphere-ionosphere exchange flux following disturbed days.  相似文献   

14.
Rocket results are presented on the OI 6300 Å line and on the N2+ 3914 Å band in the dayglow. An altitude range of 78–335 km is covered. Theoretical interpretations are given, using results of simultaneous measurements of electron density and electron temperature. The apparent brightness of the 6300 Å line at the base of the emitting region is found to be 13 kR, of which 5.5 kR are ascribed to excitation through the Schumann-Runge dissociation of O2 by the solar UV radiations, 0.55 kR to the dissociative recombination of O2+ and NO+ ions, and 0.03 kR to the excitation of O by thermal electrons. An additional source of excitation above 280 km is suggested. The deactivation of O(1D) by O2(X3Σg) is found to be appreciable below 200 km, and its rate coefficient is estimated to be 2 × 10−10 cm3/sec. The apparent brightness of the 3914 Å band at the base of the emitting region is found to be 6.5 kR, decreasing to 3.2 kR at 330 km. Assuming that fluorescent scattering of solar radiation is the mechanism involved the distribution of N2+ ions is calculated. The rate coefficients for the loss of these ions are hence calculated.  相似文献   

15.
The rocketborne measurements of the [OI] 5577 Å emission reported here are from an attempt made to determine the distribution of atomic oxygen from the sequential measurements of the brightness of the [OI] green line emission and the chemiluminescence of nitric oxide. Our results show that a) this emission originates from two layers, one around 100 km and the other above 150 km, and b) the peak concentrations of atomic oxygen determined from the Chapman and the Barth mechanism are 7 × 1011 and 9 × 1010 cm−3 respectively. Though the peak concentrations differ from each other by an order of magnitude, the profiles from the two mechanisms are very much similar in shape. With the new rate coefficient as 1· 5 × 10−33 cm6/sec, the Chapman mechanism is adequate for explaining the [OI] green line emission around 100 km.  相似文献   

16.
Helioseismological sound-speed profiles severely constrain possible deviations from standard solar models, allowing us to derive new limits on anomalous solar energy losses by the Primakoff emission of axions. For an axion-photon coupling gay 5 × 10−10 GeV−1, the solar model is almost indistinguishable from the standard case, while gay 10 × 10−10 GeV−1 is probably excluded, corresponding to an axion luminosity of about 0.20 L. This constraint on gay is much weaker than the well-known globular-cluster limit, but about a factor of 3 more restrictive than previous solar limits. Our result is primarily of interest to the large number of current or proposed search experiments for solar axions because our limit defines the maximum gay for which it is self-consistent to use a standard solar model to calculate the axion luminosity.  相似文献   

17.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

18.
In this paper we give, for the case where the proper motions of stars are unknown, a method of calculating the correct relative proper motion, the linear model being assumed always. We also show that the proper motion usually found on assuming Σxμx = Σyμx = 0, Σxμy = Σyy = 0, Σμx = 0, Σμy = 0, is not the relative proper motion, and that the difference between the two depends on the positions of the reference stars on the plate.  相似文献   

19.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

20.
We compute the big bang nucleosynthesis limit on the number of light neutrino degrees of freedom in a model-independent likelihood analysis based on the abundances of 4He and 7Li. We use the two-dimensional likelihood functions to simultaneously constrain the baryon-to-photon ratio and the number of light neutrinos for a range of 4He abundances Yp = 0.225–0.250, as well as a range in primordial 7Li abundances from (1.6 to 4.1) ×10−10. For (7Li/H)p = 1.6 × 10−10, as can be inferred from the 7Li data from Population II halo stars, the upper limit to Nν based on the current best estimate of the primordial 4He abundance of Yp = 0.238 is Nν < 4.3 and varies from Nν < 3.3 (at 95% C.L.) when Yp = 0.225 to Nν < 5.3 when Yp = 0.250. If 7Li is depleted in these stars the upper limit to Nν is relaxed. Taking (7Li/H)p = 4.1 × 10−10, the limit varies from Nν < 3.9 when Yp = 0.225 to Nν 6 when Yp = 0.250. We also consider the consequences on the upper limit to Nν if recent observations of deuterium in high-redshift quasar absorption-line systems are confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号