首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

2.
We have observed 10 solar bursts during the thermal phase using the Haystack radio telescope at 22 GHz. We show that these high frequency flux observations, when compared with soft X-ray band fluxes, give useful information about the temperature profile in the flare loops. The microwave and X-ray band fluxes provide determinations of the maximum loop temperature, the total emission measure, and the index of the differential emission measure (q(T)/T = cT–1). The special case of an isothermal loop ( = ) has been considered previously by Thomas et al. (1985), and we confirm their diagnostic calculations for the GOES X-ray bands, but find that the flare loops we observed departed significantly from the isothermal regime. Our results ( = 1–3.5) imply that, during the late phases of flares, condensation cooling ( 3.5) competes with radiative cooling ( 1.5). Further, our results appear to be in good agreement with previous deductions from XUV rocket spectra ( 2–3).  相似文献   

3.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

4.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

5.
The role of heat flux limitation in soft X-ray emitting solar flare plasmas is considered. Simple analytic arguments suggest that flux limitation is likely to be important during the explosive heating phase, even for relatively modest coronal energy fluxes (say 109 erg cm-2 s-1). This conclusion is reinforced by a detailed flare loop simulation of the heating phase. Since flux saturation effectively bottles up the coronal heat flux, mass motions now assume a dominant role in transferring energy from the coronal flare source to the lower transition region. The mass-energy exchange between the corona and chromosphere produces dramatic changes in the thermal structure of the plasma which are reflected in the differential emission measure profile of the flaring loop.  相似文献   

6.
We obtained a complete set of H, Ca 8542 and He I 10830 spectra and slit-jaw H images of the C5.6 limb flare of 1 August 2003 using the Multi-channel Infrared Solar Spectrograph (MISS) at Purple Mountain Observatory. This flare was also observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and partially by the Extreme-ultraviolet Imaging Telescope (EIT) on SOHO. This flare underwent a rapid rising and expanding episode in the impulsive phase. All the H, Ca 8542 and He I 10830 profiles of the flare are rather wide and the widest profiles were observed in the middle bright part of the flare instead of at the flare loop top near the flare maximum. The flare manifested obvious rotation in the flare loop and the decrease of the rotation angular speed with time at the loop-top may imply a de-twisting process of the magnetic field. The significant increases of the Doppler widths of these lines in the impulsive phase reflect quick heating of the chromosphere, and rapid rising and expanding of the flare loop. The RHESSI observations give a thermal energy spectrum for this flare, and two thermal sources and no non-thermal source are found in the reconstructed RHESSI images. This presumably indicates that the energy transfer in this flare is mainly by heat conduction. The stronger thermal source is located near the solar limb with its position unchanged in the flare process and spatially coincident with the intense EUV and H emissions. The weaker one moved during the flare process and is located in the H dark cavities. This flare may support the theory of the magnetic reconnections in the lower solar atmosphere.  相似文献   

7.
You  Jianqi  Hiei  Eijiro  Li  Hui 《Solar physics》2003,217(2):235-245
After carefully comparing the white-light (5600±00 Å) and the slit-jaw H images (0.5 Å  passband) of the 2N/X20 white-light flare of 16 August 1989, we found that the H counterpart identification of the bright kernels in continuum by Hiei, Nakagomi, and Takuma (1992) was incorrect. Now we come to the conclusion that none of the two white-light kernels has a corresponding bright H area. Moreover, the loop shapes in white-light are also different from those in H. H loops rose more rapidly than white-light loops. However, their height–time variations on the whole are similar. This indicates that the continuum and chromospheric emissions of the flare presumably come from different plasmas, but may be modulated by some mutual factors, such as large-scale magnetic fields. Analysis of the Hei 10830 Å spectra taken simultaneously with the slit-jaw H images shows that the line-center intensity of Hei 10830 Å doesn't have a good correlation with the intensity of nearby continuum, which supports the above conclusions. In addition, the electron density at the white-light loop top estimated from the continuum around 5600 Å  and 10830 Å  is as high as 1012–1013 cm–3.  相似文献   

8.
A post flare loop system was observed on the west limb at the total solar eclipse of February 16, 1980 in Kenya. Analyzing the monochromatic images and the flash spectra, we obtained the following results: (1) the lower part of the post flare loop system is characterized mainly by distinct cool loops of H and Fe x 6374. Fe x 6374 emitting plasma (T e = 1.0 × 106 K) is highly concentrated in the loops. The 6374 loops are broader in diameter and located very close to but a little higher than the corresponding H loops. The electron densities of the dense part in H and Fe x 6374 loops are 1011 cm-3 and 6 × 109cm-3, respectively; (2) the Ca xv emitting region (3.5 × 106 K) is confined to the upper part of the post flare loops. The electron density of this hot region is estimated as 8 × 109 cm-3 from the Ca xv line intensity ratio, I(5694)I(5445). These observational results led us to construct an empirical model of the post flare loop system which is consistent with the reconnection model of Kopp and Pneuman (1976).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 267.  相似文献   

9.
Litvinenko  Yuri E. 《Solar physics》1998,180(1-2):393-396
Dimensional analysis is used to derive the distribution of solar flare energies,p() = A-3/2, in accordance with recent observational and numerical results. Several other scalings, notably fl 2 , where fl is the flare duration, are obtained as well.  相似文献   

10.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   

11.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

12.
With the use of X-ray heliographs carried by the satellites Cosmos-166 and Cosmos-230 the height of an X-ray flare was found to be about 20–25 000 km. The regions of the X-ray flares possess a filamentary structure which, during the development of the flares, shows spatial changings with speeds up to 107 cm/sec.  相似文献   

13.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

14.
We observed the large post-flare loop system, which developed after the X 3.9 flare of 25 June 1992 at 2011 UT, in H with the Multichannel Subtractive Double Pass Spectrograph at Pic-du-Midi and in X-rays with the it Yohkoh/SXT instrument. Following the long-term development of cool and hot plasmas, we have determined the emission measure of the cool plasma and, for the first time, the temporal evolution of the hot-loop emission measure and temperature during the entire gradual phase. Thus, it was possible to infer the temporal variation of electron densities, leading to estimates of cooling times. A gradual decrease of the hot-loop emission measure was observed, from 4 × 1030 cm–5 at 2300 UT on 25 June 1992 to 3 × 1028 cm–5 at 1310 UT on 26 June 1992. During the same period, the temperature decreased only slowly from 7.2 to 6.0 × 106 K. Using recent results of NLTE modeling of prominence-like plasmas, we also derive the emission measure of cool H loops and discuss their temperature and ionisation degree. During two hours of H observations (11–13 hours after the flare) the averaged emission measure does not show any significant change, though the amount of visible cool material decreases and the volume of the loops increases. The emission measure in H, after correction for the Doppler-brightening effect, is slightly lower than in soft X-rays. Since the hot plasma seems to be more spatially extended, we arrive at electron densities in the range n infe supho n infe supcool 2 × 1010 cm–3 at the time of the H observations.These results are consistent with the post-flare loop model proposed by Forbes, Malherbe, and Priest (1989). The observed slow decrease of the emission measure could be due to an increase of the volume of the loops and a gradual decrease of the chromospheric ablation driven by the reconnection, which seems to remain effective continuously for more than 16 hours. The cooling time for hot loops to cool down to 104 K and to appear in H would be only a few minutes at the beginning of the gradual phase but could be as long as 2 hours at the end, several hours later.  相似文献   

15.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

16.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

17.
The period of very high energy (E>2×1012 eV) gamma-ray emission of Cyg X-3 by using the data of observations of the source made during 6 years, 1972–1977, was specified. The value of the period is equal to 0.199 683±1×10–6 days. Phase histogram reveals two peaks, one lagging the other by 0.6 of the period. The averaged 6 year data amounts to 1.8×10–10 quanta cm–2 s–1 (peak intensity). It corresponds to luminosity of about 1.2×1037 erg s–1 if one assumes that an emission is isotropical and the distance is equal to 10 kpc.
- E>2×1012 Cyg X-3 . 1972–1977 . - T=0,199 683 ±10–6 . , 0,6 . 1,8×10–10 –2 –1 ( ), 1,2×1037 / 10 .
  相似文献   

18.
It is shown that escaping of solar flare energetic protons into interplanetary space as well as their relation to the flare gamma-ray emission depend on the parameter = 8p/B 0 2 , where p is the pressure of hot plasma and energetic particles and B 0 is the magnetic field in a flaring loop. If 1, the bulk of the energetic protons escape to the loss cone because of diffusion due to small-scale Alfvén-wave turbulence, and precipitate into the footpoints of the flaring loop. The flare then produces intense gamma-ray line emission and a weak flux of high energy protons in interplanetary space. If >*0.3-1.0, then fast eruption of hot plasma and energetic particles out of the flaring loop occurs, this being due to the flute instability or magnetic-field-plasma nonequilibrium. The flare then produces a comparatively weak gamma-radiation and rather intense proton fluxes in interplanetary space. We predict a modulation of the solar flare gamma-ray line emission with a period 1 s during the impulsive phase that is due to the MHD-oscillations of the energy release volume. The time lag of the gamma-ray peaks with respect to the hard X-ray peaks during a simultaneous acceleration of electrons and protons can be understood in terms of strong diffusion.  相似文献   

19.
The evolution of coronal and chromospheric structures is examined together with magnetograms for the 1B flare of January 19, 1972. Soft X-ray and EUV studies are based on the OSO-7 data. The H filtergrams and magnetograms came from the Sacramento Peak Observatory. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV and H images. Until the flare, two prominent spots were connected by a continuous dark filament and their overlying coronal structure underwent an expansion at the sunspot separation rate of 0.1 km s–1. On January 19, the flare occurred as new magnetic fields emerged at 1019 Mx h–1 beneath the filament, which untwisted and erupted as the flare began. The pre-flare coronal emissions remained unchanged during the flare except for the temporary addition of a localized enhancement that started 5 min after flare onset. EUV lines normally emitted in the upper transition region displayed a sudden enhancement coinciding in time and location with a bright H point, which is believed to be near the flare trigger or onset point. The EUV flash and the initial H brightening, both of which occurred near the center of the activated filament, were followed by a second EUV enhancement at the end of the filament. The complete disruption of the filament was accompanied by a third EUV enhancement and a rapid rise in the soft X-ray emission spatially coincident with the disappearing filament. From the change of magnetic field inferred from H filtergrams and from force-free field calculations, the energy available for the flare is estimated at approximately 1031 erg. Apparently, changes in the overlying coronal magnetic field were not required to provide the flare energy. Rather, it is suggested that the flare actually started in the twisted filament where it was compressed by emerging fields. Clearly, the flare started below the corona, and it appears that it derived its energy from the magnetic fields in or near the filament.NCAR is sponsored by NSF.  相似文献   

20.
Zhang  Jun  Wang  Jingxiu 《Solar physics》2000,196(2):377-393
We analyzed simultaneous EUV images from the Transition Region And Coronal Explorer (TRACE) and H and H filtergrams from Huairou Solar Observing Station (HSOS). In active region NOAA 8307, an H C5.5 flare occurred near 06:10 UT on 23 August 1998. In this paper, we concentrated on loop–loop interaction, as well as their relationship to the C5.5 flare. We find that while opposite polarity magnetic fields cancelled each other, H bright points appeared, and then the flare occurred. Looking at EUV images, we noticed that a TRACE flare, associated with the C5.5 flare in H and H filtergrams, first appeared as patch-shaped structures, then the flare patches expanded to form bright loops. We used a new numerical technique to extrapolate the chromospheric and coronal magnetic field. Magnetic field loops, which linked flare ribbons, were found. It was suggested that loop interaction in the active region was the cause of the TRACE and H flare; the magnetic topological structures were clearly demonstrated and the TRACE flare was probably due to the interaction among energetic low-lying and other longer (higher) magnetic loops. Each primary flare kernel, seen from H, H filtergrams, and EUV images, was located near the footpoints of several interacting loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号