首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

2.
Malachite green (MG), a traditional agent used in aquaculture although is not approved; its low cost and high efficacy make illicit use likely. We developed a small‐scale, simple, and sensitive dispersive liquid–liquid microextraction procedure for the assay of trace amounts of MG in aquatic environment of Trout fish. Fiber optic‐linear array detection spectrophotometry with charge‐coupled device detector benefiting from a microcell was used for this purpose. The method is based on enhancement effect of an anionic surfactant on the extraction of MG in to very fine multidroplets of microextraction solvent which made assisted by disperser solvent. Under the optimum conditions, the enrichment factor 77.5 was obtained from a 5‐mL water sample. The calibration graph was linear up to 5 × 10?7 mol L?1 with detection limit of 1 × 10?8 mol L?1. The relative standard deviation for seven replicate measurements of 4 × 10?7 and 5 × 10?8 mol L?1 of MG were 3.3 and 4.5%, respectively.  相似文献   

3.
The present paper proposes the application of multiwalled carbon nanotubes (MWCNTs) as a solid adsorbent for selective separation/preconcentration of silver(I) in water samples prior to flame atomic absorption spectrometry. The procedure is based on the solid phase extraction of Ag(I)–2‐mercaptobenzothiazole chelate on MWCNTs. The elution step is carried out with 5 mL of 2 mol L?1 HNO3 in acetone solution at a flow rate of 1.0 mL min?1. The influences of the various analytical parameters including pH of the solution, eluent type, sample volume, flow rates of eluent, matrix ions were investigated for optimization of the presented procedure. Tests of addition/recovery for analyte ion in real samples were performed with satisfactory results. Preconcentration factor and limit of detection for Ag(I) were 160 and 0.21 µg L?1, respectively. The synthesized MWCNT exhibited excellent stability in eluent solution and its adsorption capacity was 5.4 mg of silver per gram of sorbent. The proposed method was successfully applied to trace silver determination in a variety of environmental water samples.  相似文献   

4.
Fine grained (80 µm) magnetite was introduced onto a semi‐arid grassland hillslope in 1992, as part of a set of rainfall‐simulation experiments. Using measurements of magnetic susceptibility, the median distance travelled by these magnetite grains during subsequent natural runoff events in the 16‐year period up to 2008 was estimated. Coupling this estimate to direct measurements of sediment flux obtained during the rainfall‐simulation experiments has enabled estimation of the erosion rate over this period. The estimated average erosion rate of between 2·61 × 10?2 and 4·36 × 10?2 kg m?1 year?1, is equivalent to a rate of ground lowering between 0·020 and 0·033 mm year?1. This estimate is consistent with (in the sense of being less than) an estimate of total sediment detachment over the same period. The rate of erosion measured using this travel‐distance approach is an order of magnitude less that obtained from a study based on 137Cs in a nearby catchment, and compatible with the longevity of continents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and reliable method for rapid and selective extraction and determination of trace levels of Ni2+ and Mn2+ was developed by ionic liquid (IL) based dispersive liquid–liquid microextraction coupled to flame atomic absorption spectrometry (FAAS) detection. The proposed method was successfully applied to the preconcentration and determination of nickel and manganese in soil, vegetable, and water samples. After preconcentration, the settled IL‐phase was dissolved in 100 µL of ethanol and aspirated into the FAAS using a home‐made microsample introduction system. Injection of 50 µL of each analyte into an air–acetylene flame provided very sensitive spike‐like and reproducible signals. Effective parameters such as pH, amount of IL, volume of the disperser solvent, concentration of the chelating agent, and effect of salt concentration were inspected by a (25‐1) fractional factorial design to identify the most important parameters and their interactions. Under optimum conditions, preconcentration of 10 mL sample solution permitted the detection of 0.93 µg L?1 Ni2+ and 0.52 µg L?1 Mn2+ with enrichment factors 77.2 and 82.6 for Ni2+ and Mn2+, respectively. The accuracy of the procedure was evaluated by analysis of a certified reference material (CRM TMDW‐500, drinking water).  相似文献   

6.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

8.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   

9.
Propane biosparging and bioaugmentation were applied to promote in situ biodegradation of 1,4‐dioxane at Site 24, Vandenberg Air Force Base (VAFB), CA. Laboratory microcosm and enrichment culture testing demonstrated that although native propanotrophs appeared abundant in the shallow water‐bearing unit of the aquifer (8 to 23 ft below ground surface [bgs]), they were difficult to be enriched from a deeper water‐bearing unit (82 to 90 feet bgs). Bioaugmentation with the propanotroph Rhodococcus ruber ENV425, however, supported 1,4‐dioxane biodegradation in microcosms constructed with samples from the deep aquifer. For field testing, a propane‐biosparging system consisting of a single sparging well and four performance monitoring wells was constructed in the deep aquifer. 1,4‐dioxane biodegradation began immediately after bioaugmentation with R. ruber ENV425 (36 L; 4 × 109 cells/mL), and apparent first‐order decay rates for 1,4‐dioxane ranged from 0.021 day?1 to 0.036 day?1. First‐order propane consumption rates increased from 0.01 to 0.05 min?1 during treatment. 1,4‐dioxane concentrations in the sparging well and two of the performance monitoring wells were reduced from as high as 1090 µg/L to <2 µg/L, while 1,4‐dioxane concentration was reduced from 135 µg/L to 7.3 µg/L in a more distal third monitoring well. No 1,4‐dioxane degradation was observed in the intermediate aquifer control well even though propane and oxygen were present. The demonstration showed that propane biosparging and bioaugmentation can be used for in situ treatment of 1,4‐dioxane to regulatory levels.  相似文献   

10.
The coal seams in the Permian Taiyuan Formation and the Carboniferous Shanxi Formation are the primary reservoirs for the coalbed methane(CBM)in the Hancheng region in the Ordos Basin.In this paper,the origin and evolution of waters associated with CBM production were studied on the basis of water chemistry and isotopes including the chloride and iodine compositions,oxygen and hydrogen stable isotopes,and radioactive isotope ratio of129I/127I.The ratio of129I/127I of water was determined by accelerator mass spectrometry(AMS).The result shows that the formation water is of NaHCO3and NaCl types with the total dissolved solids(TDS)varying from 1532.29 mg/L to 7061.12 mg/L.The values of129I and I/Cl ratio indicate that the formation waters were diluted by meteoric water.The129I/127I ratios range from 6.6×10 13to 1459.5×10 13.The129I/127I ratios for most of the samples are between the129I/127I initial value and that of recent anthropogenic water.This age of the formation water samples,obtained through the129I decay curve method,ranges from 0 Ma to 18.5 Ma,suggesting that the waters from the Taiyuan Formation and the Shanxi Formation are very young.Two different origins of water are identified in the Hancheng region.One group is dominated by pre-anthropogenic meteoric water,and is characterized by129I/127I ratios lower than the initial value of 15×10 13andδD,δ18O values of waters below the Global Meteoric Water Line.The other group is characterized by129I/127I ratios in excess of 15×10 13,which has undergone variable degrees of dilution by recent anthropogenic water.  相似文献   

11.
A new method for determining lead (Pb) content was developed by dispersive liquid–liquid microextraction based on the solidification of floating organic droplets followed by flame atomic absorption spectrometry. Under optimum conditions, the calibration graph was linear within the Pb content range of 8.43–400 µg L?1 with a detection limit of 2.53 µg L?1. The relative standard deviation for 10 replicate measurements of 20 and 400 µg L?1 of Pb were 3.41 and 2.78%, respectively. The proposed method was assessed through the analysis of certified reference water and recovery experiments.  相似文献   

12.
The concept of equivalent freshwater head was adapted to predict the conditions under which density‐driven flow would adversely impact measured groundwater velocities using point velocity probes (PVPs). Theoretically, vertical flow will result from any density contrast between the PVP tracer and the groundwater. However, laboratory testing of tracers with salinities ranging from 0 to 2000 mg NaCl/L showed that horizontal velocities could be determined with good accuracy with up to 60% of the total flow being vertical due to density effects in a gravel medium. The available data suggest that density effects are less likely to be pronounced in sandy sediments. The relative amount of vertical flow due to tracer density can be estimated from vertical and horizontal velocities measured with PVPs, or from the ratio of vertical to horizontal hydraulic gradients. The equivalent freshwater gradient produced from a given tracer salinity at 10 °C (a typical groundwater temperature at moderate latitudes) can be estimated from 7.80 × 10?7 × (MNaCl), where MNaCl is the mass of NaCl added, in mg, to 1 L of site groundwater in the mixing of the tracer. Equations for other temperatures were also determined.  相似文献   

13.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

14.
The increased accumulation of toxic pharmaceuticals and personal care products in the environment is a concern of worldwide relevance. Efficient technologies are needed to mitigate the level of such chemicals in natural waters. The suitability of multi‐walled carbon nanotubes (MWCNTs) to remove aqueous triclosan (a widely used anti‐microbial agent) was investigated in the present study. Tested operational parameters included the pH (3.0–11.0) value and the ionic strength (10?3, 10?2, and 10?1 M). Kinetic and thermodynamic studies were conducted at different initial concentrations (4, 8, and 10 mg/L) and temperatures (288, 298, and 308 K). Results showed higher triclosan adsorption at pH 3.0 (157.7 mg/g) than at pH 11.0 (103.9 mg/g). With an increase of ionic strength from 10?3 to 10?2 M, the adsorption capacity increased from 136.1 to 153.1 mg/g and from 80.8 to 105.8 mg/g at pH 3.0 and 10.0, respectively, while further increase of ionic strength to 10?1 M slightly reduced the triclosan adsorption to 149.9 and 94.7 mg/g due to the aggregation of MWCNTs. The Polanyi–Manes model (PMM) provided a best fitting of adsorption isotherms to the experimental data, and the kinetic process was well described by the pseudo second‐order kinetic model. The calculated thermodynamic parameters (ΔH0 = ?88.08 kJ/mol, ΔS0 = ?173.38 J/mol K) suggested that the adsorption of triclosan is spontaneous and exothermic in nature. The findings of the present work have significant implications for the removal of triclosan from aqueous solution with MWCNTs.  相似文献   

15.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

16.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Sedimentation may have a significant effect on the transport of solutes and environmental isotopes in sediment. The depth profiles of the Cl?, δ2H and δ18O in a borehole in the aquifer–aquitard system in the Pearl River Delta (PRD), China, were obtained by centrifuging the core sediment samples. A one‐dimensional model based on the sedimentation and sea level changes of the PRD during the Holocene was built to investigate numerically the transport mechanisms of Cl?, δ2H and δ18O. The sedimentation process was modelled as a moving boundary problem with the moving rate equal to the sedimentation rate. The model was calibrated and the parameters were obtained by comparing simulated and measured data. Very good agreement between all the three observed profiles and the simulated ones demonstrates the reliability of the model and the parameters. Simulation results show that the shapes of the curves are controlled by the combination of sedimentation and upper boundary conditions. Diffusion solely is adequate to reconstruct the observed profiles, which indicates that diffusion is the dominant vertical transport mechanism. The effective diffusion coefficients of the aquitard and the aquifer equal to 5.0 × 10?11 and 2.0 × 10?10 m2/s, respectively. The results of this study will help in understanding the transport mechanisms of solutes and environmental tracers in deltas with geology and hydrogeology similar to the PRD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In situ bioremediation is being considered to optimize an existing pump‐and‐treat remedy for treatment of explosives‐contaminated groundwater at the Umatilla Chemical Depot. Push‐pull tests were conducted using a phased approach to measure in situ hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and 2,4,6‐trinitrotoluene (TNT) degradation rates associated with various carbon substrates. Phase I included short‐duration transport tests conducted in each well to determine dilution rates and retardation factors for RDX and TNT. Phase II included aquifer “feedings” conducted by injecting 150 gallons of treated site groundwater amended with ethanol, corn syrup, lactose or emulsified oil (concentrations 10, 25 and 27 mM, respectively; 12% by volume for emulsified oil). Wells received up to 6 substrate “feedings” over the course of 3 months followed by monitoring dissolved oxygen, nitrate, Fe(II), and sulfate to gauge in situ redox conditions as indicators of anaerobic microbial activity. Phase III included push‐pull tests conducted by injecting 150 gallons of site groundwater amended with approximately 1000 µg/L RDX, 350 µg/L TNT, carbon substrate and a conservative tracer, followed by sampling over 8 d. Corn syrup resulted in the best RDX removal (82% on average) and the largest RDX degradation rate coefficient (1.4 ± 1.1 d?1). Emulsified oil resulted in the best TNT removal (99%) and largest TNT degradation rate coefficient (5.7 × 10?2 d?1). These results will be used to simulate full‐scale in situ bioremediation scenarios at Umatilla and will support a go/no‐go decision to initiate full‐scale bioremediation remedy optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号