首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new method for determining lead (Pb) content was developed by dispersive liquid–liquid microextraction based on the solidification of floating organic droplets followed by flame atomic absorption spectrometry. Under optimum conditions, the calibration graph was linear within the Pb content range of 8.43–400 µg L?1 with a detection limit of 2.53 µg L?1. The relative standard deviation for 10 replicate measurements of 20 and 400 µg L?1 of Pb were 3.41 and 2.78%, respectively. The proposed method was assessed through the analysis of certified reference water and recovery experiments.  相似文献   

2.
Malachite green (MG), a traditional agent used in aquaculture although is not approved; its low cost and high efficacy make illicit use likely. We developed a small‐scale, simple, and sensitive dispersive liquid–liquid microextraction procedure for the assay of trace amounts of MG in aquatic environment of Trout fish. Fiber optic‐linear array detection spectrophotometry with charge‐coupled device detector benefiting from a microcell was used for this purpose. The method is based on enhancement effect of an anionic surfactant on the extraction of MG in to very fine multidroplets of microextraction solvent which made assisted by disperser solvent. Under the optimum conditions, the enrichment factor 77.5 was obtained from a 5‐mL water sample. The calibration graph was linear up to 5 × 10?7 mol L?1 with detection limit of 1 × 10?8 mol L?1. The relative standard deviation for seven replicate measurements of 4 × 10?7 and 5 × 10?8 mol L?1 of MG were 3.3 and 4.5%, respectively.  相似文献   

3.
Dispersive liquid–liquid microextraction based on solidification of floating organic droplet (DLLME‐SFO) technique was successfully applied for simultaneous assay of eight polychlorinated biphenyls, two organochlorine, and four pyrethroid pesticides multi‐residue in aqueous samples by using GC‐electron capture detection. The effects of various parameters such as kind of extractant and dispersant and volume of them, extraction time, effect of salt addition, and pH were optimized. As a result, 5.0 µL 1‐dodecanol was chosen as extraction solvent, 600 µL methanol were used as dispersive solvent without salt addition, pH was adjusted to 7. Under the optimized conditions, the limits of detection (LOD) were ranged from 1.4 to 8.3 ng L?1. Satisfactory linear range was observed from 5.0 to 2000 ng L?1 with correlation coefficient better than 0.9909. Good precisions were also acquired with RSD better than 13.6% for all target analytes. The enrichment factors of the method were ranged from 786 to 1427. The method can be successfully applied to simultaneous separation and determination of three class residues in real water samples and good recoveries were obtained ranging from 76 to 130, 73 to 129, and 78 to 130% for tap water, lake water, and industrial waste water, respectively.  相似文献   

4.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

5.
A simple and reliable method for rapid and selective extraction and determination of trace levels of Ni2+ and Mn2+ was developed by ionic liquid (IL) based dispersive liquid–liquid microextraction coupled to flame atomic absorption spectrometry (FAAS) detection. The proposed method was successfully applied to the preconcentration and determination of nickel and manganese in soil, vegetable, and water samples. After preconcentration, the settled IL‐phase was dissolved in 100 µL of ethanol and aspirated into the FAAS using a home‐made microsample introduction system. Injection of 50 µL of each analyte into an air–acetylene flame provided very sensitive spike‐like and reproducible signals. Effective parameters such as pH, amount of IL, volume of the disperser solvent, concentration of the chelating agent, and effect of salt concentration were inspected by a (25‐1) fractional factorial design to identify the most important parameters and their interactions. Under optimum conditions, preconcentration of 10 mL sample solution permitted the detection of 0.93 µg L?1 Ni2+ and 0.52 µg L?1 Mn2+ with enrichment factors 77.2 and 82.6 for Ni2+ and Mn2+, respectively. The accuracy of the procedure was evaluated by analysis of a certified reference material (CRM TMDW‐500, drinking water).  相似文献   

6.
This work presents a solid phase extraction (SPE) method for simultaneous preconcentration of trace elements in water samples prior to their ICP-OES determination. Dowex 50W-x8 and Chelex-100 resins were used as SPE sorbent materials for preconcentration of trace Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn. The optimum sample pH, eluent concentration and sample flow rates were found to 6, 3.0 mol L−1 and 3.0 mL min−1, respectively. In terms of multi-element preconcentration capabilities, Dowex 50W-x8 appeared to be a better sorbent. The recoveries for all the tested analytes were >95%. However, Chelex-100 showed a better performance in terms of recovery (>95%) towards Cu, Fe and Zn. Under optimized conditions using Dowex 50W-x8, the relative standard deviations for different metals were <3%. The limits of detection and limits of quantification ranged from 0.01–0.39 μg L−1 and 0.05–0.1.3 μg L−1, respectively. The accuracy of the preconcentration method was confirmed by spike recovery test and the analysis of certified reference materials. The SPE method was applied for preconcentration of the analyte ions in tap water, bottled water and wastewater samples.  相似文献   

7.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

8.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

9.
An optimized analysis method based on headspace liquid phase microextraction (HS‐LPME) and gas chromatography coupled with mass spectrometry was proposed for the determination of trihalomethanes (THMs) in drinking water. The response surface method (RSM) was used to optimize the extraction of THMs for analysis by HS‐LPME. The temperature, extraction time and NaCl concentration were found to be important extraction parameters. The coefficient of determination (R2) for the model was 94.97%. A high probability value (P < 0.0001) for the regression indicated that the model had a high level of significance. The optimum conditions were seen to be: temperature 42.0°C, NaCl concentration 0.30 g/mL, and extraction time 28 min. The response variable was the summation of the THMs chromatography peak areas and the reproducibility of this was investigated in five replicate experiments under the optimized conditions. The relative standard deviations (RSD%) of the THMs ranged from 8.0–11.6%. The limits of detection (LODs), based on a signal‐to‐noise ratio (S/N) of three ranged from 0.42–0.78 μg/L, and were lower than the maximum limits for THMs in drinking water established by the WHO.  相似文献   

10.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

11.
In the present article, a procedure for the simultaneous separation and preconcentration of trace amounts of cadmium and zinc is proposed. It is based on the adsorption of cadmium and zinc ions onto a column of Amberlite XAD‐4 resin loaded with aluminon reagent. Cadmium and zinc ions are quantitatively retained on the column in the pH range from 6.5–7.5, at a flow rate of 2 mL min–1. The cadmium and zinc ions are eluted with 5.0 mL of 5 mol L–1 HNO3 solution. Cadmium and zinc are measured by flame atomic absorption spectrometry (FAAS). In the present case, 0.1 μg of cadmium and 0.5 μg of zinc can be concentrated in the column from 1000 mL of aqueous sample, where their concentrations are as low as 0.1 and 0.5 ng mL–1, respectively. The relative standard deviations, for seven replicated determinations of 1.0 μg mL–1 of cadmium and zinc, are 1.2 and 1.1%, respectively. The detection limits for cadmium and zinc in the original solution are 0.02 and 0.11 ng mL–1, respectively. The interference of a large number of anions and cations has been studied and the optimized conditions are utilized for the determination of trace amounts of cadmium and zinc in different environmental and standard samples.  相似文献   

12.
Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry and the high costs of other sensitive methods in compared to flame atomic absorption spectrometry (FAAS). Among preconcentration techniques, solid‐phase extraction is the most popular because of a number of advantages. In this work, thiol‐containing sulfonamide resin was synthesized, characterized, and applied as a new sorption material for solid phase extraction and determination of lead in natural water samples. The optimization of experimental conditions was performed using the parameters including pH, contact time, and volumes of initial and elution solutions. After preconcentration procedure, FAAS was used for determinations. The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent as well as high sorption capacity. Consequently, 280‐fold improvement in the sensitivity of analytical scheme was achieved by combining the slotted tube atom trap‐atomic absorption spectrometry (STAT‐FAAS) and the developed preconcentration method. The limit of detection was found to be 0.15 ng mL?1. The Pb2+ concentrations in the studied water samples were found to be in the range of 0.9–6.7 ng mL?1.  相似文献   

13.
Cyanuric acid is a suspected gastrointestinal or liver toxicant in humans. Therefore, determination of trace cyanuric acid is very important, in this work a novel, sensitive, and reliable method was developed using differential pulse polarography. Optimum conditions for analytical determination were found to be at a pH of 9.5, Britton–Robinson at a reduction potential of ?105 mV. Experimental results indicate an excellent linear correlation between the peak current and the concentration in the range of cyanuric acid from 0.5 to 27.0 µM (0.06–3.5 µg mL?1) with a correlation coefficient of 0.997. The limit of detection and limit of quantification were obtained as 0.15 and 0.5 µM (0.02–0.06 µg mL?1), respectively. The proposed method was successfully applied to the determination of cyanuric acid in pool water and in spiked milk. Cyanuric acid level in swimming pool water was found as 2.54 ± 0.47 µg mL?1 (19.7 ± 2.29 µM) in swimming pool water for N = 4 and 95% confidence interval. The recoveries were found to be sufficient. Also, the standard deviation of the data was low which shows high accuracy and precision of proposed differential pulse polarographic method. The influences of some other commonly found inorganic salts on the determination of cyanuric acid were also examined. Some interfering species were eliminated using complexing agents, e.g., EDTA.  相似文献   

14.
This work describes the modification of silica gel with dimethylglyoxime, in order to prepare an effective sorbent for the preconcentration and determination of copper. The sorption capacity of dimethylglyoxime‐modified silica‐gel (DMGMS) was 71.37 mg g–1 and the optimum pH for the quantitative recovery of copper was found to be 5.0. The optimum flow rate, sorbent amount, and sample volume were 1 mL min–1, 300 mg, and 50 mL, respectively. 10 mL of 0.1 mol L–1 HCl was the most suitable eluent. The detection limit of copper was 6.0 ng mL–1. The recommended method, for the determination of copper, is simple and reliable, without any notable matrix effect and can be successfully applied to environmental water samples. Copper recovery in the range from 99–100% was obtained from seawater and thermal spring water using this method. The method was applied to standard reference materials, NIST‐1515 (apple leaves) and NIST‐1643e (simulated fresh water), for the determination of copper and the results were in good agreement with certified values.  相似文献   

15.
A method for the determination of nickel in water was developed. The procedure involves preconcentration of nickel by using dispersive liquid–liquid microextraction. The Ni(II) ions were extracted in chloroform in the form of complex with the reagent 2‐(2′‐benzothiazolylazo)‐p‐cresol. Ethanol was used as the disperser solvent. After injection of the extracting mixture in a solution of nickel, a cloudy mixture was observed. A quick centrifugation induces phase separation and thus the settling of rich phase. The nickel content in the rich phase is measured by flame atomic absorption spectrometry. Under optimal conditions, the limit of detection and quantification obtained were 1.4 and 4.7 µg L?1, respectively. Some parameters used to characterize preconcentration systems, such as enrichment factor and consumption index were calculated and resulted in 29 and 0.34 mL, respectively. After optimization of variables and determination of analytical characteristics, the method was used for the analysis of certified reference materials (BCR‐713: wastewater, effluent and BCR‐414: plankton) and real water samples.  相似文献   

16.
Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (Vetiveria zizanioides L.), with or without chelating agents, in remediating lead (Pb)‐contaminated soils from actual residential sites where Pb‐based paints were used. Because the primary factor affecting Pb phytoavailability in soils is soil pH, we used two soil types widely varying in pH that have total Pb concentrations above 1500 mg kg?1 soil. Lead‐contaminated, low pH, acidic soils were collected from residential sites in Baltimore, MD and high pH, alkaline soils were collected from residential sites in San Antonio, TX. Based on the soil characterization results, two most appropriate soils (one from each city, having similar Pb levels but variable soil physico‐chemical properties) were selected for this study. Ethylenediaminetetraacetic acid (EDTA) and [S,S′]ethylenediaminedisuccinate (EDDS) were applied at 5, 10, and 15 mmol kg?1 soil. Lead uptake and translocation in vetiver was determined on day 10 after chelants addition. Plant and soil analysis show that EDTA treated soils have maximum Pb uptake and lower total soil Pb levels. Prediction models developed for exchangeable Pb show a strong correlation for total Pb accumulated in vetiver grass. Results of the sequential chemical extraction of the soils at both initial and final time‐points, indicates a significant mobilization of Pb by the two chelants from carbonate‐bound fraction to exchangeable pool. Information on physico‐chemical properties of contaminated residential soils help in predicting Pb phytoextraction and thus further help in calibrating a successful chelant‐assisted phytoremediation model.  相似文献   

17.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

18.
The concentration levels of Cd (25 ng l?1), Cu (0.45 μg l?1), Ni (0.48 μg l?1), Fe (0.2–7.0 μg l?1), Pb (40 ng l?1) and Zn (0.80 μg l?1) have been determined in the Danish Sounds and in the Kattegat. Different sampling techniques have been used and analyses have been carried out separately by two different investigators, both using freon-extraction followed by determination by atomic absorption spectrometry (a.a.s.). Except for iron, found mainly in the particulate phase, the metals are found predominantly in a dissolved and labile (extractable) form. The results are compared with trace metal levels found in the two main water masses entering the Kattegat—the North Sea and the Baltic Sea.  相似文献   

19.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

20.
Based on the study of Beijing PM10 bioreactivity with the newly developed plasmid DNA assay method, and analysis for trace elements of PM10, the cause of plasmid DNA damage by PM10 was investigated. The study showed that plasmid DNA oxidative damages by PM10 are of difference in different seasons at various areas. The concentrations of TM50 of PM10 in whole samples respectively collected at urban and comparison sites during winter were 900 μg mL−1 and 74 μg mL−1, while those in their corresponding soluble fractions were 540 μg mL−1 and 86 μg mL−1. In contrast, TM50 contents of PM10 from summer whole samples at urban areas and comparison sites were 116 μg mL−1 and 210 μg mL−1, whereas those in their soluble fractions were 180 μg mL−1 and 306 μg mL−1. The difference of bioreactivity of Beijing PM10 resulted from the variation of trace elements. The oxidative damage of plasmid DNA caused by Pb, Zn, As in PM10 (whole sample) was relatively strong. TM50 and Mn, V, Zn display stronger correlation in the soluble fraction. It implies that Zn could be the major trace element in Beijing PM10 which contributes to oxidative damage to plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号