首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms are a ubiquitous feature of most hard substrata on Earth and their role in the geomorphological alteration of rock and stone is widely recognized. The role of microorganisms in the modification of engineering materials introduced into the intertidal zone through the construction of hard coastal defences is less well understood. Here we use scanning electron microscopy (SEM) to examine microbial colonization and micro‐scale geomorphological features on experimental blocks of limestone, granite and marine concrete after eight months' exposure in the intertidal zone in Cornwall, UK. Significant differences in the occurrence of microbial growth features, and micro‐scale weathering and erosion features were observed between material types (ANOVA p < 0·000). Exposed limestone blocks were characterized by euendolithic borehole erosion (99% occurrence) within the upper 34·0 ± 12·3 µm of the surface. Beneath the zone of boring, inorganic weathering (chemical dissolution and salt action) had occurred to a depth of 125·0 ± 39·0 µm. Boring at the surface of concrete was less common (27% occurrence), while bio‐chemical crusting was abundant (94% occurrence, mean thickness 45·1 ± 27·7 µm). Crusts consisted of biological cells, salts and other chemical precipitates. Evidence of cryptoendolithic growth was also observed in limestone and concrete, beneath the upper zone of weathering. On granite, biological activity was restricted to thin epilithic films (<10 µm thickness) with some limited evidence of mechanical breakdown. Results presented here demonstrate the influence of substratum lithology, hardness and texture on the nature of early micro‐scale colonization, and the susceptibility of different engineering materials to organic weathering and erosion processes in the intertidal zone. The implications of differences in initial biogeomorphic responses of materials for long‐term rock weathering, ecology and engineering durability are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The wetting–drying and warming–cooling behaviours of rock and stone are known to influence the nature and rate of weathering. The way materials warm‐up and dry‐out also influences their suitability as biological substrata. While rock thermal behaviours have been measured under controlled laboratory conditions, previous experiments have largely been restricted to terrestrial simulations due to practical constraints. Where efforts have been made to simulate intertidal conditions, expansion and contraction of rocks or rates of breakdown (i.e. sediment production and weight loss) have been measured, while detailed observations of thermal and drying behaviours have rarely been made. A simple, semi‐automated procedure is described that enabled measurement of surface temperatures and desorption (evaporative water loss) for different material types (rock and concrete) under simulated semidiurnal tide conditions. Some preliminary results are presented illustrating the types of data that were obtained, and comparisons are made with temperature data collected on a rock platform in the UK to assess the ability of the procedure to adequately represent field conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Honeycomb weathering occurs in two environments in Late Cretaceous and Eocene sandstone outcrops along the coastlines of south‐west Oregon and north‐west Washington, USA, and south‐west British Columbia, Canada. At these sites honeycomb weathering is found on subhorizontal rock surfaces in the intertidal zone, and on steep faces in the salt spray zone above the mean high tide level. In both environments, cavity development is initiated by salt weathering. In the intertidal zone, cavity shapes and sizes are primarily controlled by wetting/drying cycles, and the rate of development greatly diminishes when cavities reach a critical size where the amount of seawater left by receding tides is so great that evaporation no longer produces saturated solutions. Encrustations of algae or barnacles may also inhibit cavity enlargement. In the supratidal spray zone, honeycomb weathering results from a dynamic balance between the corrosive action of salt and the protective effects of endolithic microbes. Subtle environmental shifts may cause honeycomb cavity patterns to continue to develop, to become stable, or to coalesce to produce a barren surface. Cavity patterns produced by complex interactions between inorganic processes and biologic activity provide a geological model of ‘self‐organization’. Surface hardening is not a factor in honeycomb formation at these study sites. Salt weathering in coastal environments is an intermittently active process that requires particular wind and tidal conditions to provide a supply of salt water, and temperature and humidity conditions that cause evaporation. Under these conditions, salt residues may be detectable in honeycomb‐weathered rock, but absent at other times. Honeycomb weathering can form in only a few decades, but erosion rates are retarded in areas of the rock that contain cavity patterns relative to adjacent non‐honeycombed surfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Transverse micro‐erosion meter (TMEM) stations were installed in rock slabs from shore platforms in eastern Canada. The slabs were put into artificial sea water for 1, 6 or 11 hours, representing high, mid‐ and low tidal areas, respectively. The TMEMs were used to record changes in surface elevation as the rocks dried during the remainder of the 12 h of a semi‐diurnal tidal cycle. A similar technique was used on the same rock types at intertidal TMEM stations in the field, as the rocks dried during low tide. Argillite and basalt surface contraction was from 0 to 0·04 mm: there was little surface expansion. Sandstones contracted by up to 0·03 mm in the field, but there was almost no contraction in the laboratory. Argillite and basalt contraction tended to be greatest in the upper intertidal zone, and to increase with rates of longer‐term surface downwearing, but there was little relationship with rock hardness or air temperature and humidity. Changes in elevation at the same points at TMEM stations in the laboratory and field were quite consistent from one tidal cycle to the next, but there were considerable variations within single tidal cycles between different points within each station. The data suggest that contraction within the elevational zone that is normally submerged twice a day by the tides is by alternate wetting and drying. Short‐term changes in elevation are generally low compared with annual rates of downwearing owing to erosion, but they may generate stresses that contribute to rock breakdown. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Downwearing rates were measured on shore platforms at about 200 transverse micro‐erosion meter (TMEM) stations, over periods ranging from 2 to 6 years. There were seven study areas in eastern Canada. The platforms were surveyed and a Schmidt Rock Test Hammer was used to measure rock hardness. More than 1200 rock samples from three of the study areas were also subjected each day, over a 3 year period, to two tidal cycles of immersion and exposure, which simulated the central intertidal zone. A further 840 samples were subjected to longer periods of exposure and immersion, over a 1 year period, which represented different elevations within the upper and lower intertidal zone, respectively. These experiments suggested that tidally generated weathering and debris removal is an effective erosional mechanism, particularly at the elevation of the lowest high tides. In the field, mean rates of downwearing for each study area ranged from 0·24 mm yr?1 to more than 1·5 mm yr?1. Rates tended to increase with elevation in the field, with maxima in the upper intertidal zone. This trend in the field cannot be attributed entirely to the tidally induced weathering processes that were simulated in the laboratory, and must reflect, in part, the effect of waves, frost, ice, and other mechanisms. It is concluded that there are no strong spatial downwearing patterns on shore platforms, and that downwearing rates in the intertidal zone are the result of a number of erosional mechanisms with different elevation‐efficacy characteristics. Furthermore, even if only one or two mechanisms were dominant in an area, any resulting relationship between downwearing rates and elevation would be obscured or eliminated by the effect of variations in the chemical and physical characteristics of the rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A saline‐spray artificial ageing test was used to simulate the effects produced in granites and sedimentary rocks (calcarenites, micrites and breccia) under conditions in coastal environments. Three main points were addressed in this study: the durability of the different kinds of rock to salt decay, the resulting weathering forms and the rock properties involved in the weathering processes. For this, mineralogical and textural characterization of each of the different rocks was carried out before and after the test. The soluble salt content at different depths from the exposed surfaces was also determined. Two different weathering mechanisms were observed in the granite and calcareous rocks. Physical processes were involved in the weathering of granite samples, whereas dissolution of calcite was also involved in the deterioration of the calcareous rocks. We also showed that microstructural characteristics (e.g. pore size distribution), play a key role in salt damage, because of their influence on saline solution transport and on the pressures developed within rocks during crystallization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we use a numerical model to explore the relative dominance of two main processes in shore platform development: wave erosion; weathering due to wetting and drying. The modelling approach differs from previous work in several aspects, including: the way that it accounts for weathering arising from gradual surficial intertidal rock degradation; subtidal profile shape development; and the consideration of a broad erosion parameter space in which, at either end of the erosion spectrum, shore platform profiles are produced by waves or weathering alone. Results show that in micro‐tidal settings, wave erosion dominates the evolution of (i) shore platforms that become largely subtidal and (ii) sub‐horizontal shore platforms that have a receding seaward edge. Weathering processes dominate the evolution of sub‐horizontal shore platforms with a stable seaward edge. In contrast, sloping shore platforms in mega‐tidal settings are produced across the full range of the process‐dominance spectrum depending on the how the erosional efficacy of wave erosion and weathering are parameterized. Morphological feedbacks control the process‐dominance. In small tidal environments wave processes are strongly controlled by the presence/absence of an abrupt seaward edge, but this influence is much smaller in large tidal environments due to larger water depths particularly at high tides. In large tidal environments, similar shore platform profile geometries can be produced by either wave‐dominant or weathering‐dominant process regimes. Equifinality in shore platform development has been noted in other studies, but mainly in the context of smaller‐scale (centimetre to metre) erosion features. Here we draw attention to geomorphic equifinality at the scale of the shore platform itself. Progress requires a greater understanding of the actual mechanics of the process regimes operating on shore platforms. However, this paper makes a substantial contribution to the debate by identifying the physical conditions that allow clear statements about process dominance. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

9.
Spheroidal weathering, one of the important rock weathering styles, has been attributed to chemical weathering by the water from joint surfaces, and mechanical aspects of the weathering have not been well addressed. We made an investigation on spheroidal weathering of Miocene granite porphyry with well‐developed columnar joints and found that this spheroidal weathering proceeds through chemical processes and accompanying mechanical processes. The investigation of the textures, physical properties, mineralogy, and chemistry of the porphyry revealed the presence of a brown band on the surface margins of corestones, representing the oxidation of pyrite and chlorite, and the precipitation of iron hydroxides, and the consequent generation of micro‐cracks within the band. During weathering, oxidation progresses inwards from joints that surround the rindlets, including both high‐angle columnar and low‐angle planar joints, and causes rounding of the unweathered interior portion of the rock. Microscopic observations of the brown band embedded with fluorescent resin show that pores are first filled with iron hydroxides, and that micro‐cracks then form parallel to the oxidation front in the outer portion of the brown band. Iron hydroxide precipitation increases the P‐wave velocity in the brown band, while micro‐crack formation decreases the tensile strength of the rock. Where the brown band has thickened to ~6 cm, the micro‐cracks are connected to one another to create continuous cracks, which separate the rindlets from the corestone. Micro‐crack formation parallel to the corestone surface may be attributed to compressive stresses generated by small amounts of volumetric expansion due to the precipitation of iron hydroxides in the brown band. Earth surface is under oxidizing environments so that precipitation of iron hydroxides commonly occurs; the spheroidal weathering in this paper is a typical example of the combination of chemical and mechanical processes under such environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The growth and decline of salt marshes may be the result of various interacting biogeomorphic processes and external factors. We present a case study of the Mokbaai on the Wadden island of Texel, where we assess the relative importance and the interaction between the biogeomorphic processes and various disturbances. We analysed changes in vegetation composition in the salt marsh and sedimentation–erosion patterns of the adjoining intertidal flat over a 30‐year period. Vegetation underwent regression in the lower parts of the marsh, i.e. the low marsh zone changed into pioneer zone. Comparing elevation measurements from 2013 and 1983 showed that the adjoining intertidal flats eroded 15–25 cm. Maintenance dredging of a nearby harbour might negatively impact the sediment balance indicating that the regression of the lower parts of the salt marsh is caused by a lack of sediment. Simultaneously, a change in the local hydrology led to vegetation succession into high and brackish salt marsh, increased organic sediment production and consequently cliff formation. The results from this case study show that, even in a relatively small salt marsh, changes in external factors may set in motion a series of biogeomorphic processes and feedbacks, leading to locally contrasting trends in spatiotemporal development. © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

11.
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Cavernous tafoni‐type weathering is a common and conspicuous global feature, creating artistic sculptures, which may be relevant for geochemical budgets. Weathering processes and rates are still a matter of discussion. Field evidence in the type locality Corsica revealed no trend of size variability from the coast to subalpine elevations and the aspect of tafoni seems to be governed primarily by the directions of local fault systems and cleavage, and only subordinately by wind directions or the aspect of insulation. REM analysis of fresh tafone chips confirmed mechanical weathering by the crystallization of salts, as conchoidal fracturing of quartz is observed. The salts are only subordinately provided by sea spray, as calcium and sodium sulfates rather than halite dominate even close to the coast. Characteristic element ratios compare well with aerosols from mixed African and European air masses. Sulfates are largely derived from Sahara dust, indicated by their sulfur isotopic composition. Salt crystals form by capillary rise within the rock and subsequent crystallization in micro‐cracks and at grain boundaries inside rain‐protected overhangs. Siderophile bacteria identified by raster electron microscopy (REM) analysis of tafone debris contribute to accelerated weathering of biotite and tiny sulfide ore minerals. By applying 10Be‐exposure dating, weathering rates of large mature tafone structures were found to be about an order of magnitude higher than those on the exposed top of the affected granite blocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Measurements were made of the water content in coastal rocks, by simulating tidal oscillations in the laboratory, and by field measurement in eastern Canada. If rapid freezing takes place upon exposure to the air, saturation levels may be high enough to permit frost weathering in fine grained rocks in the lower portions of the intertidal zone. Near the high tidal level, however, it may be dependent upon a supply of water from the ice foot and from melting snow. If freezing is slow, frost action may be inhibited by desorption of the rocks while they are exposed by the ebb tide. There was no evidence of a level of permanent sea water saturation within the intertidal zone. Ambient temperature and humidity may affect the rate of rock desorption.  相似文献   

14.
Rapid, field‐based assessments of rock hardness are required in a broad range of geomorphological investigations where rock intact strength is important. Several different methods are now available for taking such measurements, in particular the Schmidt hammer, which has seen increasing use in geomorphology in recent decades. This is despite caution from within the engineering literature regarding choice of Schmidt hammer type, normalization of rebound (R‐) values, surface micro‐roughness, weathering degree and moisture content, and data reduction/analysis procedures. We present a pilot study of the use of an Acoustic Energy Meter (AEM), originally produced, tested and developed within the field of underground mining engineering as a rapid measure of rock surface hardness, and compare it with results from a mechanical N‐Type Schmidt hammer. We assess its capabilities across six lithological study sites in southeast Queensland, Australia, in the Greater Brisbane area. Each rock exposure has been recently exposed in the 20th/21st century. Using a ‘paired’ sampling approach, the AEM G‐value shows an inverse relationship with Schmidt hammer R‐value. While both devices show variability with lithology, the AEM G‐values show less scatter than the Schmidt hammer. We conclude that each device can contribute to useful rock hardness testing in geomorphological research, but the AEM requires further field testing in a range of environments, and in particular on older and naturally‐exposed rock surfaces. Future evaluations can extend this pilot study by focusing on sampling procedures, energy sources, and data reduction protocols, within the framework of a comparison study with other rock hardness testing apparatus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A laboratory experiment has been conducted to examine the effects of ‘frost and salt’ weathering (i.e. physical breakdown by the freezing of salt solutions) on a limestone. Results show that the presence of certain salts in solution can inhibit frost damage. These findings are in direct conflict with those presented by Goudie (1974) and, more recently, Williams and Robinson (1981). Comparison of the experimental methods used in each of these three studies suggests that opposing results can be explained in terms of the different experimental procedures which were employed. If salt supply is frequent and plentiful then it seems likely that rock breakdown will be enhanced-this is the case represented by the experiment of Williams and Robinson. Conversely if the salt supply is limited and the amounts of salt remain more or less constant then rock breakdown will be inhibited-the case of the present experimental study. Caution is therefore advocated when attempting to extrapolate laboratory-derived results to infer on the behaviour of rocks under natural conditions. Several environmental situations in which ‘frost and salt’ weathering may be a possibility are dsiscussed, but it is concluded that further field data, especially concerning temperature regimes and salt availability at and below rock surfaces in cold regions, would be necessary before more definite statements could be made about the efficacy of this process.  相似文献   

16.
Tafone‐like depressions have developed on the Aoshima sandstone blocks used for a masonry bridge pier in the coastal spray zone. A thin layer of partial granular disintegration was found on the surface in depressions. To evaluate quantitatively the strength of the thin weathered layer, the hardness was measured at the surface of the sandstone blocks using both an Equotip hardness tester and an L‐type Schmidt hammer. Comparison of the two testing results indicates that the Equotip hardness value is more sensitive in evaluating the strength of a thin layer of weathered surface rock than the Schmidt hardness value. By applying two methods, i.e. both the repeated impact method and the single impact method, the Equotip tester can evaluate the strengths of fresh internal and weathered surficial portions of rocks having a thin weathering layer. Comparison of the two strengths enables evaluation of strength reduction due to weathering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Using field observations and geochemical and digital terrain analyses, we describe the structure and thickness of the regolith across a climosequence on the island of Hawai‘i to gain insight into the relative roles of precipitation and the near‐surface hydrologic structure in determining weathering patterns. In the wet portion of the climosequence, where the long‐term water balance is positive, the regolith thickness reaches an observed maximum of ~40 m and appears limited by the geomorphic base‐level of the landscape. However, even within this thick regolith, distinct units of varying weathering intensity occur; the vertical ordering of which largely reflects differences in the initial permeability structure of the basalt flows rather than a systematic decrease in weathering intensity downwards from the ground surface. In the dry portion of the climosequence, where the long‐term water balance is negative, the regolith thickness is confined to ~1 m, is highly dependent on the inferred permeability structure of the basalt flows, and is independent of geomorphic base‐level. Weathering intensity also varies according to permeability structure and decreases in this thin regolith with distance beneath the ground surface. The abrupt change in regolith depth and character that coincides with the transition from net‐positive to net‐negative long‐term water balance implies that small changes in precipitation rates around a neutral water balance result in large changes in the distribution and depth of weathering. Together our observations indicate that the distribution and depth of weathering in basalts (and probably other lithologies) might be best understood by considering how precipitation interacts with the complicated near‐surface permeability structure over regolith‐forming timescales to weather rock in the vadose zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Blue-green algae have been observed to affect limestone weathering on Aldabra Atoll, Indian Ocean. Three different habitats can be identified on the rock surface, i.e. epilithic, chasmolithic, and endolithic. Algae in each habitat may affect weathering in various ways. Samples of blue-green algae and rock were taken from various terrestrial and coastal environments on Aldabra Atoll. Samples of limestone tablets and calcite crystals after one year in situ were also studied. Light and S.E.M. microscopy revealed that endolithic boreholes were present on many samples, especially those from frequently wetted sites, to a maximum depth of 800 μm. An ‘altered zone’ of micrite and algal filaments was also discovered in many samples. From morphological and petrographical evidence blue-green algal influences on weathering on Aldabra Atoll seem to be very complex and cannot easily be related to small scale landforms.  相似文献   

19.
Despite recent rapid advances in the field of structure-from-motion (SfM) photogrammetry, the use of high-resolution data to investigate small-scale processes is a relatively underdeveloped field. In particular, rock weathering is rarely investigated using this suite of techniques. This research uses a combination of traditional non-destructive rock weathering measurement techniques (rock surface hardness) and SfM to map deterioration and loss of cohesion of the surface using three-dimensional data. The results are used to interpret weathering behaviour across two different lithologies present on the site, namely shale and limestone. This new approach is tested on seven sites in Longyearbyen, Svalbard, where active weathering of a rock surface was measured after 13 years of exposure to extreme temperature regimes and snow cover. The surface loss was quantified with SfM and combined with rock surface hardness measurement distributions extrapolated in geographic information system (GIS). The combined results are used here to quantify the difference in response of both lithologies to these extreme temperatures. This research demonstrates the potential for further integration of SfM in rock weathering research and other small-scale geomorphological investigations, in particular in difficult field conditions where portability of field equipment is paramount. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
The role of solar‐induced thermal stresses in the mechanical breakdown of rock in humid‐temperate climates has remained relatively unexplored. In contrast, numerous studies have demonstrated that cracks in rocks found in more arid mid‐latitude locations exhibit preferred northeast orientations that are interpreted to be a consequence of insolation‐related cracking. Here we hypothesize that similar insolation‐related mechanisms may be efficacious in humid temperate climates, possibly in conjunction with other mechanical weathering processes. To test this hypothesis, we collected rock and crack data from a total of 310 rocks at a forested field site in North Carolina (99 rocks, 266 cracks) and at forested and unforested field sites in Pennsylvania (211 rocks, 664 cracks) in the eastern United States. We find that overall, measured cracks exhibit statistically preferred strike orientations (47° ± 16), as well as dip angles (52° ± 24°), that are similar in most respects to comparable datasets from mid‐latitude deserts. There is less variance in strike orientations for larger cracks suggesting that cracks with certain orientations are preferentially propagated through time. We propose that diurnally repeating geometries of solar‐related stresses result in propagation of those cracks whose orientations are favorably oriented with respect to those stresses. We hypothesize that the result is an oriented rock heterogeneity that acts as a zone of weakness much like bedding or foliation that can, in turn, be exploited by other weathering processes. Observed crack orientations vary somewhat by location, consistent with this hypothesis given the different latitude and solar exposure of the field sites. Crack densities vary between field sites and are generally higher on north‐facing boulder‐faces and in forested sites, suggesting that moisture‐availability also plays a role in dictating cracking rates. These data provide evidence that solar‐induced thermal stresses facilitate mechanical weathering in environments where other processes are also likely at play. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号