首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated and optimal experimental conditions were ascertained. The results showed that when the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of MG followed the pseudo‐second‐order rate equation and fits the Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Tempkin equations well. The maximum removal of MG was obtained at pH 6 as 99.86% for adsorbent dose of 1 g/50 mL and 25 mg L?1 initial dye concentration at room temperature. Activated carbon developed from the peel of C. sativa fruit can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.  相似文献   

2.
A pilot plant study and a full scale plant study were conducted to determine the feasibility of using contact oxidation followed by activated carbon adsorption process in textile wastewater treatment, and to determine the effects of types of packing media in the contact oxidation tank and types of aeration process on the treatment performance. Results indicated that contact oxidation followed by activated carbon adsorption process was effective in removing organics and color from textile wastewaters. Types of packing media and types of aeration processes had little effect on the treatment performance. The pilot plant performance was found to perform slightly better than the performance of the full scale plant.  相似文献   

3.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

4.
Adsorptive removal of EDTA (ethylenediaminetetraacetic acid) from aqueous solution was studied using steam pyrolyzed activated carbon. Rubber wood sawdust, obtained from a local timber facility at Kodangavila, Trivandrum, Kerala, India was used as the precursor for the production of the activated carbon. Batch adsorption experiments were employed to monitor and optimize the removal process. The experimental parameters, i. e., solution pH, agitation time, initial EDTA concentration and adsorbent dosage, affecting the adsorption of EDTA onto sawdust activated carbon (SDAC) were optimized. The inner core mechanism for the interaction between EDTA and SDAC, which resulted in the adsorption process, was also discussed. The change in amount of EDTA adsorbed onto SDAC and CAC (commercial activated carbon) was compared over a wide range of pH (2.0–8.0). The maximum removal of EDTA took place in the pH range of 4.0–6.0 for SDAC and 5.0–5.5 for CAC, which demonstrates the effectiveness of the former adsorbent. Kinetic as well as equilibrium studies were performed to determine the rate constant and adsorption capacity, respectively. The adsorption kinetic data was fitted with pseudo‐first‐order kinetics and the equilibrium data was shown to follow the Langmuir isotherm model. These observations explain the formation of a monolayer of EDTA on the surface of SDAC as confirmed by the slow approach to equilibrium after 4 h of contact time. The adsorption capacity of SDAC for the removal of EDTA was 0.526 mmol/g and is seen to be greater than that of CAC and other reported adsorbents (0.193–0.439 mmol/g). Finally, it is clear that the production of steam pyrolyzed activated carbon in the presence of K2CO3 greatly enhanced EDTA removal and resulted in a product with possible commercial value for wastewater treatment strategies.  相似文献   

5.
Lepidocrocite (γ‐FeOOH) nanoparticles were synthesized from iron(II) sulfate solution and characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform‐IR (FT‐IR), nitrogen adsorption, and point of zero charge pH (pHPZC) analyses. TEM, XRD, and FT‐IR analyses proved the synthesis of nano‐lepidocrocite. Surface area and pHPZC of the synthesized lepidocrocite were 68.1 m2 g?1 and 4.8, respectively. Utilization of the synthesized lepidocrocite in the adsorption of Lanacron brown S‐GL (LBS‐GL) from aqueous solutions was investigated, and the effect of lepidocrocite dosage, pH, temperature, and contact time on this process were optimized and modeled using response surface methodology approach. The lepidocrocite dosage of 0.015 g, pH 3.5, temperature of 38°C, and contact time of 100 min were determined as optimum adsorption conditions. Isotherm and kinetics of the adsorption process were analyzed at the optimum conditions. The equilibrium data were fitted well to the Langmuir isotherm model. The maximum monolayer adsorption capacity was 528.21 mg g?1. The adsorption process was described by the pseudo‐second‐order kinetic model. Furthermore, the effect of pH on the desorption of LBS‐GL was investigated. High LBS‐GL desorption efficiency was achieved at a high pH value.  相似文献   

6.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

7.
A simple and rapid soft‐templating coupled with one‐pot solvent thermal method is developed to synthesize S‐doped magnetic mesoporous carbon (S‐doped MMC). In this method, phenolic resin is used as a carbon precursor and Pluronic copolymer P123 is used as a template and 2,5‐dimercapto‐1,3,4‐thiadiazole is used as sulfur source. Prepared S‐doped MMC processes a high specific surface area, the Fe3O4 particles are well embedded in the mesoporous carbon walls that exhibit a strong magnetic response, and the hydrated iron nitrate loading amount of 0.808 g is the best. Batch adsorption experiments are carried out at different pH, initial concentration, temperature, and contact time on the adsorption of methyl orange (MO) by S‐doped MMC. The kinetic data of the adsorption process are better fitted with pseudo‐second‐order model than the pseudo‐first‐order model. Langmuir model is more suitable for the equilibrium data than Freundlich model. The thermodynamic parameters including ΔG0, ΔH0, and ΔS0 indicate that the adsorption is a feasible, spontaneous, and endothermic process. Finally, it is found that the coexistence of PO43?, NO3?, SO42?, Cl?, and CO32? does not influence the adsorption process. These results illustrate S‐doped MMC can be an efficient adsorbent for the removal of MO from wastewater.  相似文献   

8.
In the present study, chemical oxygen demand (COD) removal by packed‐columns of activated carbon (AC) derived from two different materials (coal activated carbon, CAC and wood activated carbon, WAC) is reported as part of an on‐site wastewater treatment system for handling small volumes of wastewater generated at wood‐floor industries for which there are no proper on‐site treatment options available in the market. The performance of the sorbents, the effect of bed depth (0.19 and 0.57 m) and volumetric load (0.10 and 0.24 m h?1) on the breakthrough curve of sorption systems were studied. The results indicated the feasibility of using both ACs to treat these wastewaters. At the bed depth (0.57 m), volumetric load (0.24 m h?1), and 30% breakthrough, CAC and WAC showed treatment capacity of 40.5 L kg?1 in 250 h and 23.8 L kg?1 in 63 h, respectively. This indicated that CAC requires longer retention times to reach a performance similar to WAC. The experimental data was fit into the bed depth‐service time model showing that under the same conditions, CAC had higher maximum sorption capacity (N0) than WAC. Moreover, thermal regeneration at 500°C temperature could be a cost‐effective procedure since the reuse of spent AC through such regeneration process for further treatment could still achieve 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.  相似文献   

9.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

10.
The purpose of the work was to verify and demonstrate, on a pilot plant scale, the applicability of the Slovak clinoptilolite as a natural selective ion exchanger for the removal of ammonia from tannery wastewaters. During the pilot treatment experiments at an industrial wastewater treatment plant of the Shoe Manufacturing Industry Svit-Otrokovice, about 260 m3 of wastewaters were treated. The regeneration process was carried out with 2% NaCl (pH = 9, NaOH) and the eluate was distributed into 3 fractions. Only the most concentrated ammonia fraction was stripped in the renovation step. The economic efficiency of the studied method was compared with the biological nitrification-denitrification method.  相似文献   

11.
This study reports on the adsorption characteristics of Pb(II) ions from aqueous solutions using ZnCl2‐activated date (Phoenix dactylifera) bead (ADB) carbon with respect to change in adsorbent dosage, initial pH, contact time, initial concentration, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo‐second‐order kinetic model. Thermodynamic parameters, enthalpy change (ΔH° = 55.11 kJ/mol), entropy change (ΔS° = ? 0.193 kJ/mol/K), and Gibbs free energy change (ΔG°) were also calculated for the uptake of Pb(II) ions. These parameters show that adsorption on the surface of ADB was feasible, spontaneous in nature, and endothermic between temperatures of 298.2 and 318.2 K. The equilibrium data better fitted the Langmuir and Freundlich isotherm models than the D–R adsorption isotherm model for studying the adsorption behavior of Pb(II) onto the ADB carbon. It could be observed that the maximum adsorption capacity of ADB was 76.92 mg/g at 318.2 K and pH 6.5.  相似文献   

12.
Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N2 at 77 K adsorption, scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was ~94% for Cd2+, ~92% for Cu2+, ~99% for Pb2+, ~97% for Zn2+, ~100% for ${\rm NO}_{{\rm 3}}^{{-} } $ and ~77% for ${\rm PO}_{{\rm 4}}^{3{-} } $ ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters.  相似文献   

13.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

14.
The adsorption of Ni(II) from aqueous solutions using base treated cogon grass or Imperata cylindrica (NHIC) was performed under batch and column modes. Batch experiments were conducted to determine the factors affecting adsorption such as pH, adsorbent dosage, initial nickel concentration, contact time and temperature. The fixed‐bed column experiment was performed to determine the practical applicability of NHIC and to obtain the breakthrough curve. Adsorption was fast as equilibrium was achieved within 60 min, and was best described by the pseudo second order model. According to the Langmuir model, a maximum adsorption capacity of 6.96 mg/g was observed at pH 5 and at a temperature of 313 K. Thermodynamic parameters such as ΔG0, ΔH0 and ΔS0 were calculated, and indicated that adsorption was a spontaneous and endothermic process. The mechanistic pathway of Ni(II) uptake was examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy. The Thomas and Yoon‐Nelson models were used to analyze the fixed‐bed column data.  相似文献   

15.
The lignite coal researched by this study was subjected to a two‐stage activation process performed in the scope of obtaining active carbon from domestic resources. “Activation” and “carbonization” stages were used in the experiments. The modified lignite was produced by impregnating lignite with KOH and washing the activation product with 15% HCl solution after thermal treatment. Increasing KOH dosage also increased the removal efficiency. The variables investigated in adsorption experiments were contact time, initial concentration, pH, and sorbent dosage. Adsorption kinetics was fitted by using the pseudo‐first‐order equation, pseudo‐second‐order equation, and intra‐particle diffusion. Isotherm modeling was carried out using Langmuir, Freundlich, and Dubinin–Radushkevich equations. Selected target compound in this work is common environmental pollutant in waters. A commonly known effect of chloroform is its carcinogenic effect. Therefore, removal of these compounds from water is considerably important. Chloroform removal of 97% for was achieved by the use of Konya region activated lignite.  相似文献   

16.
The use of kaolinite‐based clay minerals as a low‐cost natural adsorbent for the removal of Cu(II) from electroplating waste leachate was studied. Batch experiments were conducted to determine the effects of varying adsorbent loading, initial pH, adsorbent dosage, and contact time. Box–Behnken design with three variables like initial pH, adsorbent dosage, and contact time at three different levels was studied to identify a significant correlation between the effects of these variables to the amount of Cu(II) adsorbed. The methodology identifies the principal experimental variables, which have the greatest effect on the adsorption process. After optimizing the input variables by using Simplex algorithm, the adsorption of Cu(II) was maximal (99.9% with a maximum (positive) standard deviation of 9.4) at pH 6.24, adsorbent dosage of 0.83 g L?1, and contact time of 97 min, respectively. Furthermore, the experimental values are in good agreement with predicted values, the correlation coefficient and adjusted correlation coefficients were found to be 0.96 and 0.87, respectively.  相似文献   

17.
18.
Zinc remediation of aqueous streams is of special concern due to its highly toxic and persistent nature. Conventional treatment technologies for the removal of zinc are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal of metal ions from aqueous solutions. Mechanisms involved in the biosorption process include chemisorption, complexation, adsorption–complexation on surface and pores, ion exchange, microprecipitation, heavy metal hydroxide condensation onto the bio surface, and surface adsorption. Biosorption largely depends on parameters such as pH, the initial metal ion concentration, biomass concentration, presence of various competitive metal ions in solution, and to a limited extent on temperature. Biosorption using biomass such as agricultural wastes, industrial residues, municipal solid waste, biosolids, food processing waste, aquatic plants, animal wastes, etc., is regarded as a cost‐effective technique for the treatment of high volume and low concentration complex wastewaters containing zinc metal. Very few reviews are available where readers can get an overview of the sorption capacities of agro based biomasses used for zinc remediation together with the traditional remediation methods. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agro based biomasses for zinc metal ions removal. An extensive table summarizes the sorption capacities of various adsorbents. These biosorbents can be modified using various methods for better efficiency and multiple reuses to enhance their applicability at industrial scale. We have incorporated most of the valuable available literature on zinc removal from waste water using agro based biomasses in this review.  相似文献   

19.
The gel-permeation chromatography system with multicomponent detection of organic carbon, organic nitrogen, organic halogen, and UV/vis absorption measurement is shown to be a useful tool for characterization of industrial wastewaters and wastewater treatment processes. The proposed system was used to investigate biologically treated wastewater from chemical industry, whereby one branch stream was identified to be the main source of persistent halogenated organics. Various treatment processes of pulp mill wastewater were also evaluated revealing that precipitation with aluminium is very effective for the removal of the high molecular fraction whereas the biological treatment is generally less selective. In the biological treatment of tannery wastewaters, it has been shown that the aerobic treatment, in contrast to anaerobic step, causes evident alterations of the composition of the polar DOC fraction. The nitrogen containing compounds are also better decomposed in the aerobic step compared to the anaerobic one.  相似文献   

20.
In the present study, the vine stem and modified vine stem were used as low cost adsorbents for the removal of acidic and basic dyes from aqueous solutions. A comparative study was also carried out with activated carbon obtained from vine stem and then the adsorption capacities of all adsorbents were evaluated by batch adsorption process. The effects of various adsorption parameters (initial pH, particle size, and contact time) were investigated. The modification of the vine stem with nitric acid increased its adsorption capacity for the basic dye. Both, vine stem and modified vine stem exhibited higher adsorption capacities than activated carbon. The adsorption capacities were found to be 322.58, 250, and 200 mg g?1 for modified, natural vine stem, and activated carbon, respectively. In the case of acidic dye, the pH strongly affected the adsorption capacity and the maximum dye uptake was observed at pH 2 for all adsorbents. The acidic dye adsorption was lower compared to basic dye on both biosorbents and activated carbon tested. The maximum acidic dye adsorption values (58.82 and 59.88 mg g?1) were obtained with the vine stem and activated carbon, respectively. In the case of lignocellulosic adsorbents, both surface charge and surface groups had main effect on the adsorption of basic dye, while adsorption mechanism in activated carbon was mainly through the physical adsorption. The results of comparative adsorption capacity of adsorbents indicated that vine stem or modified vine stem can be used as a low cost alternative to activated carbon in aqueous solution for basic dye removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号