首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275°C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln α) between 1 molal solutions and pure water at 25, 100, and 275°C are: NaCl 0.0, ?1.5, +1.0; KCl 0.0, ?1.0, +2.0; LiCl ?1.0, ?0.6, ?0.5; CaCl2 ?0.4, ?1.8, +0.8; MgCl2 ?1.1, ?0.7, ?0.3; MgSO4 ?1.1, +0.1, ?; NaF (0.8 m) 0.0, ?1.5, ?0.3; and NH4Cl (0.55 m) 0.0, ?1.2, ?1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required.  相似文献   

2.
Uranium and thorium isotope activities were measured by isotope dilution alpha spectrometry in four late Pleistocene and Holocene foraminiferal calcite samples. Sample cleaning methods were utilized to separate calcite tests from contaminating clay and surface oxide coatings. The maximum concentration of lattice bound uranium is 0.023 ppm (10 × 10?9 moles U/mole Ca), consistent with the lowest reported value, 0.025 ppm [1].230Th/234U activity ratios in samples cleaned as described above are much greater than one, indicating that the cleaning methods used do not effectively remove230Th from the surfaces of the calcite. The upper limit for lattice bound232Th is 0.039 ppm (17 × 10?9 moles Th/mole Ca).  相似文献   

3.
A three‐dimensional, numerical free‐surface‐flow simulation model is developed to investigate hydrodynamics of a lake and the predictive capabilities of the numerical model are validated by comparing them with field results obtained from Lake Naini, Uttar Pradesh, using environmental isotope (δ18O, δD and 3H) techniques. This has been carried out in order to understand the hydrodynamics of a lake (i.e. circulations, mixing and transport of water within the lake). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Helium isotope characteristics of Andean geothermal fluids and lavas   总被引:10,自引:0,他引:10  
The first comprehensive helium isotope survey of the Andes is reported here. We have sampled geothermal fluids and phyric lava flows from the Southern (svz) and Central (cvz) Volcanic Zones, the volcanically active Pun˜a region and the Precordillera, Salta Basin, Longitudinal Valley and the aseismic region between the two volcanic zones. Although the active areas are characterised by significant differences in crustal age and thickness, the svz, cvz and Pun˜a are characterised by a wide and overlapping range in 3He/4He ratios (for fluids and phenocrysts) from predominantly radiogenic values to close to the MORB ratio. The measured ranges in 3He/4He ratios (R) (reported normalised to the air 3He/4He—RA) are: svz (0.18 < R/RA< 6.9); cvz (0.82 < R/RA< 6.0); and Pun˜a (1.8 < R/RA< 5.4). Modification of magmatic 3He/4He ratios by water/rock interactions (fluids) or post-eruptive grow-in of radiogenic 4He or preferential diffusive loss of 3He (phenocrysts) is considered unlikely; this means that the wide range reflects the helium isotope characteristics of magma bodies in the Andean crust. The mechanism controlling the 3He/4He ratios appears to be a mixing between mantle (MORB-like) helium and a radiogenic helium component derived from radioactive decay within the magma (magma aging) and/or interaction with 4He-rich country rock: a process expected to be influenced by pre-eruptive degassing of the mantle component. Assimilation of lower crust is also capable of modifying 3He/4He ratios, albeit to a much lesser extent. However, it is possible that the highest measured values in each zone were established by the addition of lower crustal radiogenic helium to MORB helium. In this case, the higher ‘base level’ ratios of the svz would reflect the younger crustal structure of this region. In contrast to helium, there is no overlap in the Sr or Pb isotope characteristics of lavas from the active zones: in all areas, therefore, 3He/4He ratios appear to vary independently of Sr and Pb isotope variations. This decoupling between the lithophile tracers and helium reflects the different processes controlling their isotopic characteristics: crust-mantle interactions, alone, for Sr and Pb but for helium the effects of pre-eruptive degassing and possibly magma aging are possibly superimposed. The presence of mantle helium in the Pun˜a region, and to a lesser extent in the Salta Basin, gives an across-arc perspective to the helium isotope distribution and shows mantle melting to occur significantly to the east of the active arc: this is most probably a consequence of lithospheric delamination. The Precordillera hot spring water has the only pure radiogenic helium signal of the entire sample suite and thus marks the western limit of asthenospheric mantle under the Andes.  相似文献   

5.
Multiple sulfur and oxygen isotope compositions in Beijing aerosol   总被引:1,自引:0,他引:1  
Multiple sulfur isotopes(32S, 33 S, 34 S, 36S) and oxygen isotopes(16O, 18O) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ34S values of Beijing aerosol samples range from 1.68‰ to 12.57‰ with an average value of 5.86‰, indicating that the major sulfur source is from direct emission during coal combustion. The δ18O values vary from 5.29‰ to 9.02‰ with an average value of 5.17‰, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H2O2 in July and August, whereas H2O2 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur isotope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between ?33S and CAPE.  相似文献   

6.
Iron isotope fractionation during planetary differentiation   总被引:4,自引:0,他引:4  
The Fe isotope composition of samples from the Moon, Mars (SNC meteorites), HED parent body (eucrites), pallasites (metal and silicate) and the Earth's mantle were measured using high mass resolution MC-ICP-MS. These high precision measurements (δ56Fe ≈ ± 0.04‰, 2 S.D.) place tight constraints on Fe isotope fractionation during planetary differentiation.Fractionation during planetary core formation is confined to < 0.1‰ for δ56Fe by the indistinguishable Fe isotope composition of pallasite bulk metal (including sulfides and phosphides) and olivine separates. However, large isotopic variations (≈ 0.5‰) were observed among pallasite metal separates, varying systematically with the amounts of troilite, schreibersite, kamacite and taenite. Troilite generally has the lightest (δ56Fe ≈ − 0.25‰) and schreibersite the heaviest (δ56Fe ≈ + 0.2‰) Fe isotope composition. Taenite is heavier then kamacite. Therefore, these variations probably reflect Fe isotope fractionation during the late stage evolution and differentiation of the S- and P-rich metal melts, and during low-temperature kamacite exsolution, rather than fractionation during silicate-metal separation.Differentiation of the silicate portion of planets also seems to fractionate Fe isotopes. Notably, magmatic rocks (partial melts) are systematically isotopically heavier than their mantle protoliths. This is indicated by the mean of 11 terrestrial peridotite samples from different tectonic settings (δ56Fe = + 0.015 ± 0.018‰), which is significantly lighter than the mean of terrestrial basalts (δ56Fe = + 0.076 ± 0.029‰). We consider the peridotite mean to be the best estimate for the Fe isotope composition of the bulk silicate Earth, and probably also of bulk Earth. The terrestrial basaltic mean is in good agreement with the mean of the lunar samples (δ56Fe = + 0.073 ± 0.019‰), excluding the high-Ti basalts. The high-Ti basalts display the heaviest Fe isotope composition of all rocks measured here (δ56Fe ≈ + 0.2‰). This is interpreted as a fingerprint of the lunar magma ocean, which produced a very heterogeneous mantle, including the ilmenite-rich source regions of these basalts.Within uncertainties, samples from Mars (SNC meteorites), HED (eucrites) and the pallasites (average olivine + metal) have the same Fe isotope compositions as the Earth's mantle. This indicates that the solar system is very homogeneous in Fe isotopes. Its average δ56Fe is very close to that of the IRMM-014 standard.  相似文献   

7.
Lithium isotope geochemistry and origin of Canadian shield brines   总被引:3,自引:0,他引:3  
Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.  相似文献   

8.
Oxygen isotope analyses have been made on 27 tholeiitic basalts from the Lau and Mariana marginal ocean basins and from mid-ocean ridges. The 18O values are related to the extent of hydration by submarine weathering as indicated by H2O? and total water content. Extrapolation to zero H2O? content gives a δ18O value of 5.5‰ on the SMOW scale for unaltered marginal basin basalts, in exact agreement with the oxygen isotope “signature” of ocean-ridge tholeiites. Three alkali basalts from seamount provinces also fit the tholeiite relationship. A Lau Basin gabbro has the tholeiitic 18O content, but an Indian Ocean gabbro is unusually light (δ18O = 4.0 for whole rock, plagioclase, and amphibole), and resembles the low -18O Iceland basalts. The basalt data confirm petrologic and chemical evidence for origin of marginal basins by extensional processes with production of basalts from depleted mantle material isotopically identical to the source of ocean-ridge tholeiites.  相似文献   

9.
Linear inference theory is used to compute upper and lower bounds for lead isotope growth curves. The bounds are consistent with lead isotopes extracted from a single, isotopically uniform source characterized byU/Pb andTh/Pb ratios which are non-decreasing functions of time. Uncertainties in model ages are determined directly from the bound curves. For world-wide stratiform deposits an uncertainty of less than 100 Ma is attainable and for shale-hosted lead deposits of the Canadian Cordillera the uncertainties can be less than 200 Ma.  相似文献   

10.
The increment method is adopted to calculate oxygen isotope fractionation factors for mantle minerals, particularly for the polymorphic phases of MgSiO3 and Mg2SiO4. The results predict the following sequence of18O-enrichment:pyroxene (Mg, Fe, Ca)2Si2O6>olivine (Mg, Fe)2SiO4 > spinel (Mg, Fe)2SiO4> ilmenite (Mg, Fe, Ca) SiO3>perovskite (Mg, Fe, Ca) SiO3. The calculated fractionations for the calcite-perovskite (CaTiO3) System are in excellent agreement with the experimental calibrations. If there would be complete isotopic equilibration in the mantle, the spinel-structured silicates in the transition zone are predicted to be enriched in18O relative to the perovskite-structured silicates in the lower mantle but depleted in18O relative to olivines and pyroxenes in the upper mantle. The oxygen isotope layering of the mantle might result from differences in the chemical composition and crystal structure of mineral phases at different mantle depths. Assuming isotopic equilibrium on a whole earth scale, the chemical structure of the Earth’s interior can be described by the following sequence of18O-enrichment:upper crust>lower crust>upper mantle>transition zone>lower mantle>core. Project supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.  相似文献   

11.
The vadose zone and ground water environments are a sink for atmospheric O(2). The pathways and rates of O(2) consumption are primarily related to the availability and rate of oxidation of key reductants (e.g., organics, sulfides), through a combination of biological or abiotic reactions. The range in delta(18)O of O(2) in the subsurface is large, from +20 per thousand to +39 per thousand (Vienna Standard Mean Ocean Water) in the vadose zone and from +12 per thousand to +46 per thousand in ground water. The aggregated O(2) isotope fractionation by consumption (alpha(k)) was found to range from 0.970 to 1.300 and 0.980 to 1.030 in vadose zones and aquifers, respectively. These data suggest the delta(18)O patterns in both unsaturated zones and aquifers can be attributed to microbially mediated reactions (alpha(k)= range from 0.975 to 1.000), but there are apparently other inverse isotope fractionating processes (alpha(k) > 1.000). Circumstantial evidence suggested O(2) processed during the sulfide oxidation and precipitation of Fe-oxyhydroxides process (or other unidentified processes) could be the cause of the significant (18)O depletions. Overall, delta(18)O data from vadose zones and ground water revealed that isotope fractionation by consumption of gaseous and dissolved O(2) in the subsurface and ground water environments is more complicated than what has classically been attributed solely to geomicrobial respiration. Given the questions and inexplicable data arising from this study, further detailed research on O(2) consuming processes in the Earth's subsurface and ground water is warranted.  相似文献   

12.
The primary δD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about ?50 to ?85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not “juvenile”, but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have δ18O = +7.0 to +10.0, probably indicating significant involvement of high-18O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have δ18O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low δ18O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low-18O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (δD as low as ?180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have δD values lower than ?120. The lowering of δD values commonly correlates with re-setting of K-Ar ages, and in the Idaho batholith two broad zones (10,000 km2) can be defined where δD biotite <?100 and K-Ar “ages” have all been re-set to values less than 60 m.y., suggesting that the Ar loss was caused by the meteoric-hydrothermal circulation systems. In certain Precambrian batholiths, a much different type of very low-temperature, regional alteration by surface-derived waters took place over an extended period long after emplacement, producing “brick-red” feldspars and markedly discordant Rb-Sr isochron “ages”.  相似文献   

13.
Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. εNd varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a εNdSr correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high87Sr/86Sr ratios and as such lie to the right of the correlation line towards seawater compositions.From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago.  相似文献   

14.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

15.
16.
17.
Data for the diffusion of cations in pyroxenes are relevant to a variety of sub-solidus processes including order-disorder and exsolution. Similar data must also be available if the reliability of geobarometers and geothermometers involving pyroxenes is to be assessed. Two types of diffusion experiment have been performed to determine cation diffusion rates in pyroxenes: (1) interdiffusion between single crystals of diopside and polycrystalline sinters enriched in Al and Fe, and (2) interdiffusion between single crystals of diopside and a glass of the same composition which was isotopically enriched in26Mg and43Ca. Following high-temperature annealing for periods up to several hundred hours, analysis of the diffusion couples, using an electron microprobe and an ion microprobe respectively, failed to show any measurable diffusion profiles. From these “null result” experiments the diffusion coefficients (D) for Al and Fe in diopside are estimated to be less than4×10?14cm2s?1 at 1200°C, and values ofD for Ca and Mg in diopside are estimated to be less than7 × 10?14cm2s?1 at 1250°C. These rates are significantly slower than published tracer-type diffusion data for Ca and Al.A review of studies of order-disorder, microstructural coarsening, and diffusion in pyroxenes suggest that activation energies for cation exchange are typically in excess of 60 kcal mol?1. Transport rates will be assisted, and activation energies lowered by sample non-stoichiometry, inhomogeneities, high dislocation densities and the presence of water.The collective data for Al, Mg and Ca diffusion in diopside indicate diffusion coefficients? 10?15cm2s?1 at 1200°C. A comparison with data for diffusion in garnet, olivine and spinel suggests that pyroxenes may have the highest blocking temperatures.  相似文献   

18.
The ranges of δ18O and δ17O in components of the Murchison (C2) chondrite exceed those in all other meteorites analyzed. Previous authors have proposed that C2 chondrites are the products of aqueous alteration of anhydrous silicates. A model is presented to determine whether the isotopic variations can be understood in terms of such alteration processes. The minimum number (two) of initial isotopic reservoirs is assumed. Two major stages of reservoir interaction are required: one at high temperature to produce the16O-mixing line observed for the anhydrous minerals, and another at low temperature to produce the matrix minerals. The isotopic compositions severely constrain the conditions of the low-temperature process, requiring temperatures < 20°C and volume fractions of water > 44%. Extension of the model to the data on C1 chondrites requires aqueous alteration in a warmer, wetter environment.  相似文献   

19.
Oxygen isotope measurements of phosphate from fish teeth and bones   总被引:2,自引:0,他引:2  
In situ measurements of lunar surface brightness temperatures made as a part of the Apollo Lunar Surface Experiments Package at the Apollo 15 Hadley Rille landing site are reported. Data derived from 5 thermocouples of the Heat Flow Experiment, which are lying on or just above the surface, are used to examine the thermal properties of the upper 15 cm of the lunar regolith using eclipse and nighttime cool-down temperatures. Application of finite-difference techniques in modeling the lunar soil shows the thermocouple data are best fit by a model consisting of a low-density and low-thermal conductivity surface layer approximately 2 cm thick overlying a region increasing in conductivity and density with depth. Conductivities on the order of 1 × 10?5 W/cm-°K are postulated for the upper layer, with conductivity increasing to the order of 1 × 10?4 W/cm-°K at depths exceeding 20 cm. An increase in mean temperature with depth indicates that the ratio of radiative to conductive transfer at 350°K is 2.7 for at least the upper few centimeters of lunar soil; this value is nearly twice that measured for returned lunar fines. The thermal properties model deduced from Apollo 15 surface temperatures is consistent with earth-based microwave observations if electrical properties measured on returned lunar fines are assumed.  相似文献   

20.
The isotopic composition of neon was measured for seventeen samples of submarine basalt glass from the Mid-Atlantic Ridge between 54° and 73°N. They include the Reykjanes, Kolbeinsey, and Mohns Ridge segments. Neon isotopic anomalies, relative to the atmospheric ratios, exist in both20Ne/22Ne and21Ne/22Ne. A maximum excess20Ne of 7% was measured in two samples from the Reykjanes Ridge. Samples with lower20Ne excesses (six samples with δ20Ne between 2 and 4%) from all three ridge segments, appear to result from mixing of a mantle component with a δ20Ne of 7% and atmospheric neon.21Ne/22Ne ratios are up to 8% above the atmospheric value, with no apparent correlation with the20Ne excesses. The anomalies in20Ne/22Ne are difficult to explain by mass fractionation of an atmospheric reservoir since several of the samples have δ20Ne values greater than could be produced by single-stage fractionation. Most likely, the excess21Ne results from nuclear reactions in the mantle source, although there is no definite correlation between the δ21Ne or the excess21Ne (cm3 STP/g) and the uranium concentration. Large variations in the observed4He/20Ne ratio (40–12,000) remain unexplained at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号